精英家教网 > 高中数学 > 题目详情
已知sinx=
5
13
,x∈(
π
2
,π),求cos2x和tan(x+
π
4
)值.
由sinx=
5
13

得到cos2x=1-2sin2x=1-2×(
5
13
2=
119
169

又sinx=
5
13
,x∈(
π
2
,π),所以cosx=-
12
13

则tanx=
sinx
cosx
=-
5
12

所以tan(x+
π
4
)=
tanx+1
1-tanx
=
7
17
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinx=
5
13
,x∈(
π
2
,π),求cos2x和tan(x+
π
4
)值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知sinx+cosx=
1
5
,x∈(0,x)
,求tanx的值.
(2)已知0<α<
π
2
<β<π
cosα=
3
5
sin(α+β)=
5
13
,求sinα和cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinx=
5
13
,x∈(0,
π
2
)
,则 cosx=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知sinx=
513
,且x为第二象限角,求tanx及2sin2x-sinxcosx+cos2x 的值.
(2)设p(3a,-4a)(a≠0)为角β的终边上一点,求sinβ,cosβ及tanβ的值.

查看答案和解析>>

同步练习册答案