精英家教网 > 高中数学 > 题目详情
一条直线若同时平行于两个相交平面,则这条直线与这两个平面的交线的位置关系是( )
A.异面 B.平行C.相交D.不确定
B
如图所示,直线a∥α,a∥β,α∩β=b,求证a∥b.只需考虑线面平行的性质定理及平行公理即可.
解:由a∥α得,经过a的平面与α相交于直线c,

则a∥c,
同理,设经过a的平面与β相交于直线d,
则a∥d,由平行公理得:c∥d,
则c∥β,又c?α,α∩β=b,所以c∥b,
又a∥c,所以a∥b.
故答案为B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)

如图,四边形ABCD为正方形,QA⊥平面ABCDPDQAQA=AB=PD
(I)证明:PQ⊥平面DCQ
(II)求棱锥QABCD的的体积与棱锥PDCQ的体积的比值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分 )如图,在等腰直角中,为垂足.沿对折,连结,使得

(1)对折后,在线段上是否存在点,使?若存在,求出的长;若不存在,说明理由; 
(2)对折后,求二面角的平面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知在直四棱柱ABCDA1B1C1D1中,底面ABCD为直角梯形,且满足AD⊥AB,BC∥AD,AD=16,AB=8,BB1=8,E,F分别是线段A1A,BC上的点.
(1) 若A1E=5,BF=10,求证:BE∥平面A1FD.
(2) 若BD⊥A1F,求三棱锥A1AB1F的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直二面角D—AB—E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.

(Ⅰ)求证:AE⊥平面BCE;
(Ⅱ)求点D到平面ACE的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四棱柱中,平面,底面是边长为的正方形,侧棱.

(1)求证:平面
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)
如图,已知四棱锥PABCD的底面是直角梯形,∠ABC=∠BCD=90oABBCPBPC=2CD=2,侧面PBC⊥底面ABCDOBC的中点,AOBDE.

(1)求证:PABD
(2)求二面角PDCB的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)如图,直三棱柱中,AB⊥BC,D为AC的中点,
(1)求证:∥平面
(2)若四棱柱的体积为2,求二面角的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)
在如图所示的多面体中,已知正方形ABCD和直角梯形ACEF所在的平面互相垂直,
 
(Ⅰ)求证:平面面DEF;
(Ⅱ)求二面角A—BF—E的大小。

查看答案和解析>>

同步练习册答案