精英家教网 > 高中数学 > 题目详情

如图,直三棱柱中,分别是棱的中点,点在棱上,已知

(1)求证:平面

(2)设点在棱上,当为何值时,平面平面

 

【答案】

(1)详见解析;(2)

【解析】

试题分析:(1)要证明平面,只需在平面内找一条直线与平行,如果不容易直接找到,可以将平移到平面内,平移直线的方法一般有①中位线平移;②平行四边形对边平行平移;③成比例线段平移,该题连接,连接,可证,从而,进而可证平面;(2)该题主要是如何分析得到的位置,然后再证明,由已知可得平面平面,进而可证平面,故ADCM,只需有,则CM平面,从而平面平面,那么如何保证呢?在矩形中,只需,则

,则,所以,倒过来,再证明平面平面即可.

试题解析:(1)连接,连接,因为CE,AD为△ABC中线,所以O为△ABC的重心,,从而OF//C1E,OF面ADF,平面,所以平面

(2)当BM=1时,平面平面

在直三棱柱中,由于平面ABC,BB1平面B1BCC1,所以平面B1BCC1平面ABC,由于AB=AC,中点,所以,又平面B1BCC1∩平面ABC=BC,所以AD平面B1BCC1, 而CM平面B1BCC1,于是ADCM,因为BM =CD=1,BC= CF=2,所以,所CMDF,

DF与AD相交,所以CM平面,CM平面CAM,所以平面平面,∴当BM=1时,平面平面

考点:1、直线和平面平行的判定;2、面面垂直的判定;3、面面垂直的性质.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(09年东城区期末理)(14分)

如图,在直三棱柱中,.

(Ⅰ)求证:;

(Ⅱ)求二面角的大小;

(Ⅲ)在上是否存在点,使得∥平面,若存在,试给出证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2014届天津市高二第一次月考数学试卷(解析版) 题型:解答题

 (13分) 如图,直三棱柱中, ,.

(Ⅰ)证明:

(Ⅱ)求二面角的正切值.

 

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省高三9月月考理科数学试卷(解析版) 题型:解答题

如图,直三棱柱中,是棱的中点.

(Ⅰ)证明:

(Ⅱ)求二面角的余弦值。

 

查看答案和解析>>

科目:高中数学 来源:2013届广东惠阳一中实验学校高二6月月考理科数学试卷(解析版) 题型:解答题

(本题满分14分)如图, 在直三棱柱中,,

,点的中点.

⑴求证:

⑵求证:平面

⑶求二面角的正切值.

 

查看答案和解析>>

科目:高中数学 来源:2013届天津市等三校高二第一学期期末联合考试文科数学试卷 题型:解答题

如图, 在直三棱柱中,,,点的中点,

(1)求证:

(2)求证:

(3)求直线与平面所成角的正切值.

 

查看答案和解析>>

同步练习册答案