精英家教网 > 高中数学 > 题目详情

(本小题满分14分)如图,椭圆的左焦点为,右焦点为,离心率.过的直线交椭圆于两点,且△的周长为

(Ⅰ)求椭圆的方程.

(Ⅱ)设动直线与椭圆有且只有一个公共点,且与直线相交于点.试探究:在坐标平面内是否存在定点,使得以为直径的圆恒过点?若存在,求出点的坐标;若不存在,说明理由.

 

【答案】

(Ⅰ);(Ⅱ)证明见解析.

【解析】

试题分析:(Ⅰ)∵过的直线交椭圆于两点,且△的周长为

,∴,∴

∴椭圆的方程为                                           ……4分

(Ⅱ)由,消元可得:        ……5分

∵动直线与椭圆有且只有一个公共点

,      

此时,

                                       ……8分

,此时

为直径的圆为,交轴于点,

,此时

为直径的圆为轴于点,

故若满足条件的点存在,即,                                 ……12分

证明如下

故以为直径的圆恒过轴上的定点.                           ……14分

考点:本小题主要考查椭圆标准方程的求法、直线与椭圆的位置关系以及与圆结合的综合问题,考查学生综合运用所学知识的能力和计算能力.

点评:遇到直线与椭圆的位置关系的题目,往往免不了要把直线方程和椭圆方程联立方程组,消去一个未知数,然后利用根与系数的关系进行解答,有时也和向量结合起来解决问题,运算量比较大,难度中等偏上,但是是高考中常考的题目,必须加以重视.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案