精英家教网 > 高中数学 > 题目详情
15.在△ABC中,角A,B,C的对边分别为a,b,c,已知向量$\overrightarrow{m}$=((b+c)2,-1),$\overrightarrow{n}$=(1,a2+bc),且$\overrightarrow{m}$•$\overrightarrow{n}$=0.
(1)求角A的大小;
(2)若a=3,求△ABC的周长的取值范围.

分析 (1)根据平面向量的数量积,利用余弦定理,即可求出角A的大小;
(2)利用余弦定理和基本不等式,求出b+c的取值范围,再根据三角形三边关系,即可求出△ABC周长的取值范围.

解答 解:(1)向量$\overrightarrow{m}$=((b+c)2,-1),$\overrightarrow{n}$=(1,a2+bc),
∴$\overrightarrow{m}$•$\overrightarrow{n}$=(b+c)2-(a2+bc)=0,
∴b2+c2-a2=-bc,
∴cosA=$\frac{{b}^{2}{+c}^{2}{-a}^{2}}{2bc}$=-$\frac{bc}{2bc}$=-$\frac{1}{2}$;
又A∈(0,π),
∴A=$\frac{2π}{3}$;
(2)由a=3,结合余弦定理得
a2=b2+c2+bc
=(b+c)2-bc≥(b+c)2-${(\frac{b+c}{2})}^{2}$
=$\frac{3}{4}$(b+c)2
∴(b+c)2≤12,
∴b+c≤2$\sqrt{3}$,
∴a+b+c≤3+2$\sqrt{3}$,
∴6<a+b+c≤3+2$\sqrt{3}$,
∴△ABC的周长的取值范围是(6,3+2$\sqrt{3}$].

点评 本题考查了平面向量的数量积和余弦定理、基本不等式以及三角形三边关系的应用问题,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知函数$y=acos(2x+\frac{π}{3})+3$,$x∈[0,\frac{π}{2}]$的最大值为4,则正实数a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知AB是圆Γ1:(x-2)2+y2=1的直径,P为椭圆Γ2:$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1上一动点,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范围是[8,48].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.沧州市第二中学辩论队于2016年12月代表河北省参加第二届京津中学生辩论赛,并获得亚军,现在辩论队由3名男队和5名队员组成.
(1)学校为宣传辩论队取得的优异成绩,需要给全体队员排队照相,要求3名队员互不相邻,有多少种不同排法?
(2)将8名队员分成四个小组,每个小组两人,分别取高一1,2,3,4班四个班开座谈会,有多少种不同的分组方式?
(3)为准备下次的比赛,现从从8名队员中选出4名队员做一辨、二辨、三辨、四辨,要求至少有一名男队员,有多少种不同的选法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,a,b,c分别为角A,B,C所对的边,且三个内角A,B,C满足A+C=2B.
(1)若b=2,求△ABC的面积的最大值,并判断取最大值时三角形的形状;
(2)若$\frac{1}{cosA}+\frac{1}{cosC}=-\frac{{\sqrt{2}}}{cosB}$,求$cos\frac{A-C}{2}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.复数z=2-i在复平面对应的点在第几象限(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.按如图的规律所拼成的一图案共有1024个大小相同的小正三角形“△”或“?”,则该图案共有(  )
A.16层B.32层C.64层D.128层

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,网格纸上小正方形的边长为1,粗线画出的是一个四棱锥的三视图,则该四棱锥最长棱的棱长为(  )
A.3B.$\sqrt{5}$C.$2\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若复数z满足($\sqrt{3}$-2i)z=6i(i是虚数单位),则z=(  )
A.$\frac{-12+6\sqrt{3}i}{7}$B.$\frac{3}{2}$-$\frac{\sqrt{3}}{2}$iC.$\frac{3}{2}$+$\frac{\sqrt{3}}{2}$iD.-$\frac{3}{2}$-$\frac{\sqrt{3}}{2}$i

查看答案和解析>>

同步练习册答案