精英家教网 > 高中数学 > 题目详情

如图,P是双曲线数学公式上的动点,F1、F2是双曲线的左右焦点,M是∠F1PF2的平分线上一点,且F2M⊥MP.某同学用以下方法研究|OM|:延长F2M交PF1于点N,可知△PNF2为等腰三角形,且M为F2N的中点,得数学公式.类似地:P是椭圆数学公式上的动点,F1、F2是椭圆的左右焦点,M是∠F1PF2的平分线上一点,且F2M⊥MP,则|OM|的取值范围是________.

(0,c)
分析:类比双曲线中的研究方法,结合椭圆的定义,即可确定|OM|的取值范围.
解答:延长F2M交PF1于点N,可知△PNF2为等腰三角形,且M为F2N的中点,得
∵|PF1|+|PF2|=2a
∴|OM|=a-|PF2|
∵a-c≤|PF2|≤a+c
∵P、F1、F2三点不共线
∴0<a-|PF2|<c
∴0<|OM|<c
故答案为:(0,c).
点评:本题考查类比推理,考查椭圆的定义,考查学生分析解决问题的能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年山西大学附中高三第二学期高三第一次模拟测试数学试卷 题型:填空题

.如图,P是双曲线上的动点,F1

F2是双曲线的焦点,M是的平分线上一点,且

某同学用以下方法研究|OM|:延长F2M交PF1于点N,可知

等腰三角形,且M为F2M的中点,得

 
类似地:P是椭圆上的动点,F1、F2是椭圆的焦点,M是的平分线上一点,且.则|OM|的取值范围是           

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012年福建省四地六校高二第二次月考理科数学 题型:填空题

如图,P是双曲线上的动点,是双曲线的左右焦点,的平分线上一点,且某同学用以下方法研究:延长于点,可知为等腰三角形,且M为的中点,得类似地:P是椭圆上的动点,是椭圆的左右焦点,M是的平分线上一点,且,则的取值范围是            

 

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年浙江省台州市高二下学期第六次质检数学文卷 题型:填空题

如图,P是双曲线上的动点,F1、F2是双曲线的焦点,M是的平分线上一点,且某同学用以下方法研究|OM|:延长于点N,可知为等腰三角形,且M为的中点,得类似地:P是椭圆上的动点,F1、F2是椭圆的焦点,M是的平分线上一点,且,则|OM|的取值范围是              

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省四地六校高二(上)第二次联考数学试卷(理科)(解析版) 题型:填空题

如图,P是双曲线上的动点,F1、F2是双曲线的焦点,M是∠F1PF2的平分线上一点,且.某同学用以下方法研究|OM|:延长F2M交PF1于点N,可知△PNF2为等腰三角形,且M为F2M的中点,得.类似地:P是椭圆上的动点,F1、F2是椭圆的焦点,M是∠F1PF2的平分线上一点,且.则|OM|的取值范围是    

查看答案和解析>>

科目:高中数学 来源:2010年福建省厦门市高三3月质量检查数学试卷(理科)(解析版) 题型:解答题

如图,P是双曲线上的动点,F1、F2是双曲线的焦点,M是∠F1PF2的平分线上一点,且.某同学用以下方法研究|OM|:延长F2M交PF1于点N,可知△PNF2为等腰三角形,且M为F2M的中点,得.类似地:P是椭圆上的动点,F1、F2是椭圆的焦点,M是∠F1PF2的平分线上一点,且.则|OM|的取值范围是    

查看答案和解析>>

同步练习册答案