精英家教网 > 高中数学 > 题目详情
(2011•佛山二模)如图,某地一天从6~14时的温度变化曲线近似满足函数:y=Asin(ωx+φ)+B.则中午12点时最接近的温度为(  )
分析:由图象可知B=20,A=10,
T
2
=14-6=8,从而可求得ω,6ω+φ=2kπ-
π
2
(k∈Z)可求得φ,从而可得到函数解析式,继而可得所求答案.
解答:解:不妨令A>0,B>0,
则由
A+B=30
B-A=10
得:A=10,B=20°C;
T
2
=14-6=8,
∴T=16=
|ω|

∴|ω|=
π
8
,不妨取ω=
π
8

由图可知,6×
π
8
+φ=2kπ-
π
2
(k∈Z),
∴φ=2kπ-
4
,不妨取φ=
4

∴曲线的近似解析式为:y=10sin(
π
8
x+
4
)+20,
∴中午12点时最接近的温度为:y=10sin(
π
8
×12+
4
)+20°C=10sin
4
+20°C=20+10sin
π
4
=5
2
+20°C≈27°C.
故选B.
点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,确定A,B,ω,φ是关键,考查综合分析与转化运用知识的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•佛山二模)已知函数f(x)=
2x,x≤0
log2x,x>0
,则f[f(-1)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•佛山二模)在正项等比数列{an}中,若a2+a3=2,a4+a5=8,则a5+a6=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•佛山二模)设x,y满足约束条件
2x+y-6≥0
x+2y-6≤0
y≥0
,则目标函数z=x+y的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•佛山二模)已知平面直角坐标系上的三点A(0,1),B(-2,0),C(cosθ,sinθ)(θ∈(0,π)),且
BA
OC
共线.
(1)求tanθ;
(2)求sin(2θ-
π
4
)
的值.

查看答案和解析>>

同步练习册答案