若椭圆的左、右焦点分别为F1,F2,椭圆的离心率为:2.(1)过点C(-1,0)且以向量为方向向量的直线交椭圆于不同两点A、B,若,则当△OAB的面积最大时,求椭圆的方程。
(2)设M,N为椭圆上的两个动点,,过原点O作直线MN的垂线OD,垂足为D,求点D的轨迹方程.
(1) (2)
【解析】
试题分析:(1),设椭圆的方程为
依题意,直线的方程为:
由
设
当且仅当
此时
(2)设点的坐标为.
当时,由知,直线的斜率为,所以直线的方程为,或,其中,.
点的坐标满足方程组
得,整理得,
于是,.
.
由知.,
将代入上式,整理得.
当时,直线的方程为,的坐标满足方程组
所以,.
由知,即,
解得.
这时,点的坐标仍满足.
综上,点的轨迹方程为
考点:直线与圆锥曲线的综合问题;椭圆的标准方程
点评:本题主要考查椭圆标准方程,简单几何性质,直线与椭圆的位置关系,抛物线的简单性质等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.
科目:高中数学 来源: 题型:
(05年辽宁卷)(14分)
已知椭圆的左、右焦点分别是
、,是椭圆外的动点,满足,
点P是线段与该椭圆的交点,点T在线段上,并且
满足.
(Ⅰ)设为点P的横坐标,证明 ;
(Ⅱ)求点T的轨迹C的方程;
(Ⅲ)试问:在点T的轨迹C上,是否存在点M,使△的面积.若存在,求
∠的正切值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆的左、右焦点分别是,是椭圆外的动点,满足,点是线段与该椭圆的交点,点在线段上,并且满足,.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)试问:在点的轨迹上,是否存在点,使的面积,若存在,求的正切值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分) 已知椭圆的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足
点P是线段F1Q与该椭圆的交点,
点T在线段F2Q上,并且满足
(Ⅰ)设为点P的横坐标,证明;
(Ⅱ)求点T的轨迹C的方程; (Ⅲ)试问:在点T的轨迹C上,是否存在点M,
使△F1MF2的面积S=若存在,求∠F1MF2的正切值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年甘肃西北师大附中高三11月月考文科数学试卷(解析版) 题型:解答题
已知椭圆 的左、右焦点分别是、,是椭圆右准线上的一点,线段的垂直平分线过点.又直线:按向量平移后的直线是,直线:按向量平移后的直线是 (其中)。
(1) 求椭圆的离心率的取值范围。
(2)当离心率最小且时,求椭圆的方程。
(3)若直线与相交于(2)中所求得的椭圆内的一点,且与这个椭圆交于、两点,与这个椭圆交于、两点。求四边形ABCD面积的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com