| A. | (0,1] | B. | [1,$\sqrt{3}$] | C. | [1,2] | D. | [$\sqrt{3}$,2] |
分析 根据分段函数的表达式先求出当-1≤x≤0上的值域,结合函数在定义域上的值域关系,确定a的范围即可得到结论.
解答 解:当-1≤x≤0时,f(x)=2x+1∈[1,2],![]()
当0<x≤a时,f(x)=x3-3x+2,
函数的导数f′(x)=3x2-3=3(x-1)(x+1),
由f′(x)>0得x>1或x<-1,
由f′(x)<0得-1<x<1,
则当x=1时,函数f(x)取得极小值f(1)=0,
∵f(0)=2,
∴若函数f(x)的值域为[0,2],
则a≥1,
且当a≥1时,f(a)≤2,
即a3-3a+2≤2,得a3-3a≤0,
a2-3≤0,
得1≤a≤$\sqrt{3}$,
故选:B
点评 本题主要考查分段函数的应用,根据函数值域的范围,利用导数法和数形结合判断函数的取值范围是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,+∞) | B. | (0,2) | C. | (-∞,2) | D. | (-∞,0)∪(2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,0) | B. | (0,1) | C. | (-1,+∞) | D. | (-∞,-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | an=$\frac{1}{(2n+1)(2n+2)}$ | B. | an=$\frac{1}{(2n-1)(n+1)}$ | C. | an=$\frac{1}{n(2n+1)}$ | D. | an=$\frac{1}{(2n-1)(2n+1)}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com