分析 (Ⅰ)运用n=1时,a1=S1,当n≥2时,an=Sn-Sn-1,结合等差数列的通项公式,即可得到所求;
(Ⅱ)求得bn=$\frac{n+2}{{{2^n}{a_n}{a_{n+1}}}}$=$\frac{n+2}{{2}^{n}•2n•2(n+1)}$=$\frac{1}{{2}^{n+1}}$($\frac{1}{n}$-$\frac{1}{n+2}$)=$\frac{1}{2}$[$\frac{1}{n•{2}^{n}}$-$\frac{1}{(n+1)•{2}^{n+1}}$],再由数列的求和方法:裂项相消求和,化简整理即可得到所求和.
解答 解:(Ⅰ)当n=1时,an2+2an=4Sn.
即为${a_1}^2+2{a_1}=4{S_1}=4{a_1}$,
解得a1=2或者a1=0(舍去)
又${a_n}^2+2{a_n}=4{S_n}$①
当n≥2时,${a_{n-1}}^2+2{a_{n-1}}=4{S_{n-1}}$②
①-②得:${a_n}^2-a_{n-1}^2+2({a_n}-{a_{n-1}})=4{a_n}$,
分解因式得(an+an-1)(an-an-1-2)=0;
又an>0,可得an-an-1=2(n≥2),
则数列{an}是以首项为2,公差为2的等差数列,
则an=2n;
(Ⅱ)bn=$\frac{n+2}{{{2^n}{a_n}{a_{n+1}}}}$=$\frac{n+2}{{2}^{n}•2n•2(n+1)}$=$\frac{1}{{2}^{n+1}}$($\frac{1}{n}$-$\frac{1}{n+2}$)
=$\frac{1}{2}$[$\frac{1}{n•{2}^{n}}$-$\frac{1}{(n+1)•{2}^{n+1}}$],
则Tn=b1+b2+…+bn=$\frac{1}{2}$[$\frac{1}{2}$-$\frac{1}{2•{2}^{2}}$+$\frac{1}{2•{2}^{2}}$-$\frac{1}{3•{2}^{3}}$+…+$\frac{1}{n•{2}^{n}}$-$\frac{1}{(n+1)•{2}^{n+1}}$]
=$\frac{1}{2}$[$\frac{1}{2}$-$\frac{1}{(n+1)•{2}^{n+1}}$]=$\frac{1}{4}$-$\frac{1}{(n+1)•{2}^{n+2}}$.
点评 本题考查数列的通项的求法,注意运用n=1时,a1=S1,当n≥2时,an=Sn-Sn-1,以及等差数列的通项公式,考查数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | [0,$\frac{π}{3}$] | B. | [$\frac{π}{3}$,$\frac{5π}{3}$] | C. | [$\frac{π}{3}$,$\frac{2π}{3}$] | D. | [$\frac{5π}{3}$,π] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1] | B. | [1,$\sqrt{3}$] | C. | [1,2] | D. | [$\sqrt{3}$,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,3) | B. | (1,3] | C. | [-1,2) | D. | (-1,2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com