精英家教网 > 高中数学 > 题目详情
7.若函数f(x)=1+xlg$\frac{a-x}{b-x}$是其定义域上的偶函数,则函数y=f(x)的图象不可能是(  )
A.B.C.D.

分析 先根据偶函数的性质得到a+b=0,在分类讨论即可判断函数的图象.

解答 解:因为f(x)偶函数,
所以1-xlg$\frac{a+x}{b+x}$=1+xlg$\frac{a-x}{b-x}$,
所以$\frac{a-x}{b-x}$=$\frac{b+x}{a+x}$,
∴a+b=0,
①当a=b=0时,选项A正确,
②当a=-b>0时,f(x)<1选项B正确,
③当a=-b<0时,f(x)>1选项D正确,
故选:C.

点评 本题考查了函数图象的识别,关键是掌握偶函数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.(1)已知函数y=f(x)的定义域为[-1,2],求函数y=f(1-x2)的定义域.
(2)已知函数y=f(2x-3)的定义域为(-2,1],求函数y=f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设关于x,y的不等式组$\left\{{\begin{array}{l}{x-y+1≥0}\\{x+m≤0}\\{y-m≥0}\end{array}}\right.$表示的平面区域内存在点P(x0,y0)满足x0-2y0>3,则实数m的取值范围是(  )
A.(-1,0)B.(0,1)C.(-1,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知数列{an},a1=$\frac{1}{3}$,前n项和Sn=n(2n-1)an,则数列{an}的通项公式是(  )
A.an=$\frac{1}{(2n+1)(2n+2)}$B.an=$\frac{1}{(2n-1)(n+1)}$C.an=$\frac{1}{n(2n+1)}$D.an=$\frac{1}{(2n-1)(2n+1)}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=sin(2x-$\frac{π}{3}$)的图象为C,下面结论中正确的是(  )
A.函数f(x)的最小正周期是2π
B.函数f(x)在区间(-$\frac{π}{12}$,$\frac{π}{2}$)上是增函数
C.图象C可由函数g(x)=sin2x的图象向右平移$\frac{π}{3}$个单位得到
D.图象C关于点($\frac{π}{6}$,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知各项为正数的数列{an}的前n项和为Sn且满足an2+2an=4Sn
(Ⅰ)数列{an}的通项an
(Ⅱ)令bn=$\frac{n+2}{{{2^n}{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,内角A、B、C的对边分别为a、b、c,且a=4,b=3,c=2,若点D为线段BC上靠近B的一个三等分点,则AD=$\frac{\sqrt{19}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=∫0x(tsint)dt在x=$\frac{π}{2}$处可导,则$\underset{lim}{k→0}\frac{f(\frac{π}{2}-2k)-f(\frac{π}{2})}{k}$=(  )
A.-$\frac{π}{2}$B.$\frac{π}{2}$C.D.π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.由1~20以内的所有素数组成的集合.

查看答案和解析>>

同步练习册答案