分析 (1)要求函数的定义域,就是求函数式中x的取值范围;(2)根据复合函数定义域之间的关系进行求解即可.
解答 解:(1)因为函数y=f(x)的定义域是[-1,2],
所以函数 f(1-x2)中-1≤1-x2≤2,
∴-1≤x2≤2,
即x∈[-$\sqrt{2}$,$\sqrt{2}$],
∴f(1-x2)的定义域为[-$\sqrt{2}$,$\sqrt{2}$].
(2)∵函数y=f(2x-3)的定义域为(-2,1],
∴-2<x≤1,-4<2x≤2,-7<2x-3≤-1,
即函数y=f(x)的定义域为(-7,-1].
点评 本题考查函数的定义域并且是抽象函数的定义域,本题解题的关键是不管所给的是函数是什么形式只要使得括号中的部分范围一致即可.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,$\frac{π}{3}$] | B. | [$\frac{π}{3}$,$\frac{5π}{3}$] | C. | [$\frac{π}{3}$,$\frac{2π}{3}$] | D. | [$\frac{5π}{3}$,π] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,3] | B. | (1,2] | C. | (1,3] | D. | [-1,2] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com