分析 (1)由a1=$\frac{1}{2}$,且前n项和为Sn满足Sn=n2an(n∈N*).令n=2,可得:$\frac{1}{2}+{a}_{2}$=4a2,解得a2=$\frac{1}{6}$,同理可得:a3,a4.可得:an=$\frac{1}{n(n+1)}$.
(2)利用an=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,可得数列{an}的前n项和为Sn.即可证明.
解答 1)解:∵a1=$\frac{1}{2}$,且前n项和为Sn满足Sn=n2an(n∈N*).
令n=2,可得:$\frac{1}{2}+{a}_{2}$=4a2,解得a2=$\frac{1}{6}$,同理可得:a3=$\frac{1}{12}$,a4=$\frac{1}{20}$.
可得:an=$\frac{1}{n(n+1)}$.
(2)证明:∵an=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
∴数列{an}的前n项和为Sn=$(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$<1.
即Sn<1.
点评 本题考查了递推关系、“裂项求和”方法、数列的单调性,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{3}{5}$ | C. | $\frac{9}{20}$ | D. | $\frac{19}{20}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | S=S+$\frac{i+1}{i}$,i≥100? | B. | S=S+$\frac{i+1}{i}$,i≥101? | C. | S=S+$\frac{i}{i-1}$,i≥100? | D. | S=S+$\frac{i}{i-1}$,i≥101? |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | an=$\frac{1}{(2n+1)(2n+2)}$ | B. | an=$\frac{1}{(2n-1)(n+1)}$ | C. | an=$\frac{1}{n(2n+1)}$ | D. | an=$\frac{1}{(2n-1)(2n+1)}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com