精英家教网 > 高中数学 > 题目详情
11.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,$\overrightarrow{a}$•$\overrightarrow{b}$=-$\frac{3}{4}$,求|5$\overrightarrow{a}$+2$\overrightarrow{b}$|.

分析 根据平面向量的数量积求出对应的模长即可.

解答 解:∵|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,$\overrightarrow{a}$•$\overrightarrow{b}$=-$\frac{3}{4}$,
∴${(5\overrightarrow{a}+2\overrightarrow{b})}^{2}$=25${\overrightarrow{a}}^{2}$+20$\overrightarrow{a}$•$\overrightarrow{b}$+4${\overrightarrow{b}}^{2}$
=25×22+20×(-$\frac{3}{4}$)+4×32
=121,
∴|5$\overrightarrow{a}$+2$\overrightarrow{b}$|=11.

点评 本题考查了利用平面向量的数量积求模长的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.${log_{\sqrt{2}}}$2$\sqrt{2}$+log23•log3$\frac{1}{4}$=1;若2a=5b=10,则$\frac{1}{a}$+$\frac{1}{b}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.数列{an}中,其通项公式an=(a-2)•2n-1+2•3n-1,若{an}为递增数列,则a的取值范围是(  )
A.(-3,+∞)B.(-2,+∞)C.(2,+∞)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知射击一次甲命中目标的概率是$\frac{3}{4}$,乙命中目标的概率是$\frac{4}{5}$,现甲、乙朝目标各射击一次,目标被击中的概率是(  )
A.$\frac{1}{2}$B.$\frac{3}{5}$C.$\frac{9}{20}$D.$\frac{19}{20}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若sinα=$\frac{3}{5}$,sin(α+β)=$\frac{5}{13}$(α,β为第一象限角)求cosβ的值.

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江苏泰兴中学高二上学期期末数学(理)试卷(解析版) 题型:解答题

阅读下列有关光线的入射与反射的两个事实现象,现象(1):光线经平面镜反射满足入射角与反射角相等(如图1);现象(2):光线从椭圆的一个焦点出发经椭圆反射后通过另一个焦点(如图2).试结合上述事实现象完成下列问题:

(1)有一椭圆型台球桌,长轴长为,短轴长为.将一放置于焦点处的桌球击出,经过球桌边缘的反射(假设球的反射完全符合现象(2)后第一次返回到该焦点时所经过的路程记为,求的值(用表示);

(2)结论:椭圆上任一点处的切线的方程为.记椭圆的方程为

①过椭圆的右准线上任一点向椭圆引切线,切点分别为,求证:直线恒过一定点;

②设点为椭圆上位于第一象限内的动点,为椭圆的左右焦点,点的内心,直线轴相交于点,求点横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江苏泰兴中学高二上学期期末数学(理)试卷(解析版) 题型:填空题

若当时,不等式恒成立,则实数的取值范围是

查看答案和解析>>

科目:高中数学 来源:2016-2017学年广东清远三中高一上学期月考一数学试卷(解析版) 题型:解答题

已知集合

(1)若 ,求的值;

(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知函数y=f(x)的定义域为[-1,2],求函数y=f(1-x2)的定义域.
(2)已知函数y=f(2x-3)的定义域为(-2,1],求函数y=f(x)的定义域.

查看答案和解析>>

同步练习册答案