精英家教网 > 高中数学 > 题目详情
6.若sinα=$\frac{3}{5}$,sin(α+β)=$\frac{5}{13}$(α,β为第一象限角)求cosβ的值.

分析 利用同角三角函数的基本关系、以及三角函数在各个象限中的符号,求得cosα和cos(α+β)的值,再利用两角和差的三角公式求得 cosβ=cos[(α+β)-α]的值.

解答 解:∵sinα=$\frac{3}{5}$,sin(α+β)=$\frac{5}{13}$(α,β为第一象限角),∴cosα=$\sqrt{{1-sin}^{2}α}$=$\frac{4}{5}$,sinα>sin(α+β),
∴α+β∈($\frac{π}{2}$,π),∴cos(α+β)=-$\sqrt{{1-sin}^{2}(α+β)}$=-$\frac{12}{13}$,
∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=-$\frac{12}{13}$•$\frac{4}{5}$+$\frac{5}{13}$•$\frac{3}{5}$=-$\frac{33}{65}$.

点评 本题主要考查同角三角函数的基本关系、以及三角函数在各个象限中的符号,两角和差的三角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.在△ABC中,sinA:sinB:sinC=4:5:7,点M为BC的中点,AM=$\sqrt{11}$,则AC=$\frac{{5\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知等比数列{an}的前n项和为Sn,若S2n=4(a1+a3+a5+…+a2n-1),则等比数列{an}的公比q=(  )
A.3B.$\frac{1}{3}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知cos(α-$\frac{π}{4}$)=$\frac{\sqrt{3}}{2}$,则sin2α=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,有块正方形的钢板ABCD,其中一个角有部分损坏,现要把它截成一块正方形的钢板EFGH.在直角三角形GFC中,∠GFC=θ.若截后的正方形钢板EFGH的面积是原正方形ABCD的面积的三分之二,求θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,$\overrightarrow{a}$•$\overrightarrow{b}$=-$\frac{3}{4}$,求|5$\overrightarrow{a}$+2$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江苏泰兴中学高二上学期期末数学(理)试卷(解析版) 题型:解答题

根据统计资料,某工艺品厂的日产量最多不超过20件根据统计资料,每日产品废品率与日产量 (件)之间近似地满足关系式(日产品废品率=×100%) .

已知每生产一件正品可赢利2千元,而生产一件废品则亏损1千元.(该车间的日利润日正品赢利额日废品亏损额)

(1)将该车间日利润(千元)表示为日产量(件)的函数;

(2)当该车间的日产量为多少件时,日利润最大?最大日利润是几千元?

查看答案和解析>>

科目:高中数学 来源:2016-2017学年广东清远三中高一上学期月考一数学试卷(解析版) 题型:解答题

已知函数是定义在上的奇函数,当时,.

(1)求的解析式;

(2)问是否存在正数,当时,,且的值域为?若存

在,求出所有的的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知f(x)=g(x)-3,且函数y=g(x)为奇函数,若f(4)=2,则f(-4)=-8.

查看答案和解析>>

同步练习册答案