精英家教网 > 高中数学 > 题目详情
14.已知cos(α-$\frac{π}{4}$)=$\frac{\sqrt{3}}{2}$,则sin2α=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

分析 利用二倍角公式及诱导公式化简即可得到sin2α的值.

解答 解:cos2(α-$\frac{π}{4}$)=2cos2(α-$\frac{π}{4}$)-1=$\frac{1}{2}$,
∵cos(2α-$\frac{π}{2}$)=sin2α,
∴sin2α=$\frac{1}{2}$,
故答案选:A.

点评 本题主要考查诱导公式、二倍角的余弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.经过抛物线y2=2px(p>0)外一点A(-2,-4)的直线l:$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\\{\;}\end{array}\right.$(t为参数,t∈R)与抛物线分别交于M1,M2两点,且|AM1|、|M1M2|,|AM2|成等比数列.
(1)把直线l的参数方程化为普通方程;
(2)求p的值及线段M1M2的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在三棱锥P-ABC中,底面ABC为直角三角形,且∠ACB=90°,∠ABC=30°,AB=2,侧面PAB为等边三角形.
(Ⅰ)当PC=$\sqrt{3}$时,求证:AC⊥PB;
(Ⅱ)当平面PAB⊥平面ABC时,求三棱锥A-PBC的高.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.数列{an}中,其通项公式an=(a-2)•2n-1+2•3n-1,若{an}为递增数列,则a的取值范围是(  )
A.(-3,+∞)B.(-2,+∞)C.(2,+∞)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设等差数列{an}的前n项和为Sn,公差为d,已知S2,S3+1,S4成等差数列.
(1)求公差d的值;
(2)若a1,a2,a5成等比数列
①求数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和Tn
②求$\frac{2{a}_{n}-1}{2{S}_{n}}$(n∈N*)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知射击一次甲命中目标的概率是$\frac{3}{4}$,乙命中目标的概率是$\frac{4}{5}$,现甲、乙朝目标各射击一次,目标被击中的概率是(  )
A.$\frac{1}{2}$B.$\frac{3}{5}$C.$\frac{9}{20}$D.$\frac{19}{20}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若sinα=$\frac{3}{5}$,sin(α+β)=$\frac{5}{13}$(α,β为第一象限角)求cosβ的值.

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江苏泰兴中学高二上学期期末数学(理)试卷(解析版) 题型:填空题

若当时,不等式恒成立,则实数的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知复数z=-3i+$\frac{2}{1+i}$,则z为(  )
A.1-4iB.1+4iC.-1+4iD.-1-4i

查看答案和解析>>

同步练习册答案