分析 (1)由等差数列的性质,可得数列{an}是等差数列,设公差为d,运用等差数列的通项公式可得d=3,可得所求通项公式;
(2)求得$\frac{3}{{{a_n}{a_{n+1}}}}$=$\frac{1}{3n-2}$-$\frac{1}{3n+1}$,运用裂项相消求和,化简整理,结合不等式的性质,即可得证.
解答 解:(1)由an+2+an=2an+1,即an+2-an+1=an+1-an,
可得数列{an}是等差数列,设公差为d,
由a2=4,即a1+d=4,解得d=3,
则an=1+3(n-1)=3n-2;
(2)证明:$\frac{3}{{{a_n}{a_{n+1}}}}=\frac{3}{(3n-2)(3n+1)}=\frac{1}{3n-2}-\frac{1}{3n+1}$,
则${S_n}=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+…+\frac{1}{3n-2}-\frac{1}{3n+1}=1-\frac{1}{3n+1}$,
由$\frac{1}{3n+1}>0$,可得Sn<1.
点评 本题考查等差数列的定义和通项公式的运用,数列的求和方法:裂项相消求和,考查化简运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | S=S+$\frac{i+1}{i}$,i≥100? | B. | S=S+$\frac{i+1}{i}$,i≥101? | C. | S=S+$\frac{i}{i-1}$,i≥100? | D. | S=S+$\frac{i}{i-1}$,i≥101? |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,+∞) | B. | (0,2) | C. | (-∞,2) | D. | (-∞,0)∪(2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | an=$\frac{1}{(2n+1)(2n+2)}$ | B. | an=$\frac{1}{(2n-1)(n+1)}$ | C. | an=$\frac{1}{n(2n+1)}$ | D. | an=$\frac{1}{(2n-1)(2n+1)}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,2) | B. | (0,1) | C. | (-2,2) | D. | (-∞,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com