精英家教网 > 高中数学 > 题目详情
已知为函数图象上一点,O为坐标原点,记直线的斜率
(1)若函数在区间上存在极值,求实数m的取值范围;
(2)当 时,不等式恒成立,求实数的取值范围;
(3)求证:
(1);(2);(3)详见解析.

试题分析:(1)在函数定义域范围内求函数的极值,则极值点在内;(2)首先根据条件分离出变量,由转化成求的最小值(利用二次求导判单调性);(3)结合第(2)问构造出含
的不等关系,利用裂项相消法进行化简求和.
试题解析:(1)由题意              1分
所以                   2分
时,;当时,
所以上单调递增,在上单调递减,
处取得极大值.                      3分
因为函数在区间(其中)上存在极值,
所以,得.即实数的取值范围是.        4分
(2)由,令
.                           6分
,则
因为所以,故上单调递增.        7分
所以,从而
上单调递增,
所以实数的取值范围是.                    9分
(3)由(2) 知恒成立,
         11分
,        12分
所以,  ,
将以上个式子相加得:

.               14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(I)求的单调区间;
(II)设,若上单调递增,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的定义域为.
(I)求函数上的最小值;
(Ⅱ)对,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中是常数且.
(1)当时,在区间上单调递增,求的取值范围;
(2)当时,讨论的单调性;
(3)设是正整数,证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

=上是减函数,则的取值范围是___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在上的函数,则  (    )
A.既有最大值也有最小值B.既没有最大值,也没有最小值
C.有最大值,但没有最小值D.没有最大值,但有最小值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的导函数的部分图象为(  )

A                 B                 C                 D

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数的导函数则函数的单调递减区间是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

有极大值和极小值,则的取值范围是__      .

查看答案和解析>>

同步练习册答案