精英家教网 > 高中数学 > 题目详情
若函数f(x)=
2x2x+1
+sinx在区间[-k,k](k>0)上的值域为[m,n],则m+n=
1
1
分析:本题要求的是函数最大值与最小值的和,由函数的解析式,可通过研究函数的对称性来探究解题的思路,故可先求出f(-x),再与函数f(x)=
2x
2x+1
+sinx进行比较,总结规律,再由本题中所求的m+n的值是一个定值,采用特殊值法求出答案
解答:解:因为f(-x)=
2-x
2-x+1
+sin(-x)=
1
1+2x
-sinx

对比f(x)=
2x
2x+1
+sinx得f(x)+f(-x)=1   ①
又本题中f(x)=
2x
2x+1
+sinx在区间[-k,k](k>0)上的值域为[m,n],即无论k取什么样的正实数都应有最大值与最小值的和是一个确定的值
故可令k=1,由于函数f(x)=
2x
2x+1
+sinx在区间[-k,k](k>0)上是一个增函数,故m+n=f(k)+f(-k)
由①知,m+n=f(k)+f(-k)=1
故答案为1
点评:本题是一个比较隐蔽的函数性成立的问题,解题的关键有二,一是意识到m+n是一个定值,再就是根据所给区间[-k,k](k>0)关于原点对称,联想到研究f(x)+f(-x)的值,这是本题解题的重点,难点是领会到m+n是一个定值,本题考查了推理判断的能力,比较抽象,题词后要注意领会本题做题中的经验技巧.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=
2x(x<3)
3x-m(x≥3)
,且f(f(2))>7,则实数m的取值范围为
m<5
m<5

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
-2x+3(x≤2)
logax(x>2)
在R上是减函数,则实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设m∈N,若函数f(x)=2x-m
10-x
-m+10
存在整数零点,则m的取值集合为
{0,3,14,30}
{0,3,14,30}
,此时x的取值集合为
{-5,1,9,10}
{-5,1,9,10}

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
2x,                 x>0
-x2-2x-2,   x≤0

(Ⅰ)在给定的平面直角坐标系中画出函数f(x)图象;
(Ⅱ)利用图象写出函数f(x)的值域、单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
2x,x<0
-2-x,x>0
,则函数y=f(f(x))的值域是
 

查看答案和解析>>

同步练习册答案