精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy上取两个定点 再取两个动点,且

(Ⅰ)求直线交点M的轨迹C的方程;

(Ⅱ)过的直线与轨迹C交于P,Q,过P轴且与轨迹C交于另一点NF为轨迹C的右焦点,若,求证:.

【答案】(Ⅰ) ; (Ⅱ)见解析.

【解析】【试题分析】(Ⅰ)先建立动直线的方程,再运用消参法探求轨迹方程; (Ⅱ)借助直线与椭圆的位置关系推证:

(Ⅰ)依题意知直线A1N1的方程为

直线A2N2的方程为………………………………2分

M(xy)是直线A1N1A2N2交点,①×②得 ,

mn=2,整理得………………………………4分

(Ⅱ)设

………………………………6分

, ………………8分

要证,即证,只需证:

只需即证 ,………10分

由()得:,即证. ……………………12分

(本题亦可先证直线NQ过焦点F,再由得证)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆G:,过点A(0,5),B(8,3),C、D在该椭圆上,直线CD过原点O,且在线段AB的右下侧

(1)求椭圆G的方程;

(2)求四边形ABCD 的面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)b·ax(其中ab为常量,且a>0a1)的图象经过点A(1,6)B(3,24)

(1)f(x)

(2)若不等式m0x(1]时恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)判断并证明函数的奇偶性;

(2)判断当时函数的单调性,并用定义证明;

(3)若定义域为,解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中, ,D是棱AC的中点,且.

(1)求证:

(2)求异面直线所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】活水围网养鱼技术具有密度高、经济效益好的特点研究表明:活水围网养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数不超过4(尾/立方米)时,的值为(千克/年);当时,的一次函数;当达到(尾/立方米)时,因缺氧等原因,的值为(千克/年)

(1)当时,求函数的表达式;

(2)当养殖密度为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大,并求出最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数

(Ⅰ)讨论的极值点的个数;

(Ⅱ)若对于,总有.(i)求实数的范围; (ii)求证:对于,不等式成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)loga(1x)g(x)loga(1x)(a>0a1).

(1)a2函数f(x)的定义域为[363]f(x)的最值;

(2)求使f(x)g(x)>0x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF∠BAD∠CDA90°M是线段AE上的动点.

1)试确定点M的位置,使AC∥平面MDF,并说明理由;

2)在(1)的条件下,求平面MDF将几何体ADEBCF分成的两部分的体积之比.

查看答案和解析>>

同步练习册答案