精英家教网 > 高中数学 > 题目详情

已知数列满足:,记数列的前n项之积为,则=___

 

【答案】

1

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,n∈N*,an>0,数列{an}的前n项和为Sn,且满足an+1=
2
Sn+1+Sn-1

(1)求数列{an}的通项公式;
(2)数列{Sn}中存在若干项,按从小到大的顺序排列组成一个以S1为首项,3为公比的等比数列{bn},
①求数列{bn}的项数k与n的关系式k=k(n);
②记cn=
1
k(n)-1
(n≥2)
,求证:
n
i=2
ci∈[
1
3
2
3
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},{bn},且满足an+1-an=bn(n=1,2,3,…).
(1)若a1=0,bn=2n,求数列{an}的通项公式;
(2)若bn+1+bn-1=bn(n≥2),且b1=1,b2=2.记cn=a6n-1(n≥1),求证:数列{cn}为常数列;
(3)若bn+1bn-1=bn(n≥2),且b1=1,b2=2.若数列{
ann
}中必有某数重复出现无数次,求首项a1应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:若数列满足,则称数列为“平方递推数列”。已知数列中,,点在函数的图像上,其中为正整数。

  (1)证明:数列是“平方递推数列”,且数列为等比数列。

  (2)设(1)中“平方递推数列”的前项之积为,即,求数列的通项及关于的表达式。

(3)记,求数列的前项之和,并求使的最小值。

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山东省淄博市高三3月模拟考试理科数学试卷(解析版) 题型:解答题

若数列满足,则称数列平方递推数列.已知数列,点在函数的图象上,其中为正整数.

1)证明数列平方递推数列,且数列为等比数列;

2设(1)中平方递推数列的前项积为

,求

3)在(2)的条件下,记,求数列的前项和,并求使的最小值

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分7分,第3小题满分5分.

  在数列(p为非零常数),则称数列为“等差比”数列,p叫数列的“公差比”.

已知数列满足,判断该数列是否为等差比数列?

已知数列是等差比数列,且公差比,求数列的通项公式

(3)记为(2)中数列的前n项的和,证明数列也是等差比数列,并求出公差比p的值.

查看答案和解析>>

同步练习册答案