精英家教网 > 高中数学 > 题目详情
已知数列{an},{bn},且满足an+1-an=bn(n=1,2,3,…).
(1)若a1=0,bn=2n,求数列{an}的通项公式;
(2)若bn+1+bn-1=bn(n≥2),且b1=1,b2=2.记cn=a6n-1(n≥1),求证:数列{cn}为常数列;
(3)若bn+1bn-1=bn(n≥2),且b1=1,b2=2.若数列{
ann
}中必有某数重复出现无数次,求首项a1应满足的条件.
分析:(1)利用“累加求和”和等差数列的前n项和公式即可求出;
(2)通过已知条件先探究数列{bn}是一个以6为周期的循环数列,进而即可证明数列{cn}为常数列.
(3)由条件探索出:数列{a6n+i}均为以7为公差的等差数列,求出fn=
an
n
,及其单调性,通过对ai分类讨论即可得出结论.
解答:解:(1)当n≥2时,有
an=a1+(a2-a1)+(a3-a2)+…+(an-an-1
=a1+b1+b2+…+bn-1
=2×1+2×2+…+2×(n-1)
=2×
(n-1)n
2
=n2-n,又当n=1时此式也成立.
∴数列{an}的通项为an=n2-n
(2)∵bn+1+bn-1=bn(n≥2),
∴对任意的n∈N*有bn+6=bn+5-bn+4=-bn+3=bn+1-bn+2=bn
∴数列{bn}是一个以6为周期的循环数列
又∵b1=1,b2=2,
∴b3=b2-b1=1,b4=b3-b2=-1,b5=b4-b3=-2,b6=b5-b4=-1.
∴cn+1-cn=a6n+5-a6n-1=a6n+5-a6n+4+a6n+4-a6n+3+…+a6n-a6n-1
=b6n+4+b6n+3+b6n+2+b6n+1+b6n+b6n-1=b4+b3+b2+b1+b6+b5
=-1+1+2+1-1+-2=0(n≥1),
所以数列{cn}为常数列.
(3)∵bn+1bn-1=bn(n≥2),且b1=1,b2=2,
∴b3=2,b4=1,b5=
1
2
b6=
1
2

且对任意的n∈N*,有bn+6=
bn+5
bn+4
=
1
bn+3
=
bn+1
bn+2
=bn

设cn=a6n+i(n≥0),(其中i为常数且i∈{1,2,3,4,5,6},
∴cn+1-cn=a6n+6+i-a6n+i=b6n+i+b6n+i+1+b6n+i+2+b6n+i+3+b6n+i+4+b6n+i+5
=b1+b2+b3+b4+b5+b6
=1+2+2+1+
1
2
+
1
2
=7(n≥0).
所以数列{a6n+i}均为以7为公差的等差数列.
fn=
an
n
,则fk=
a6k+i
6k+i
=
ai+7
i+6k
=
7
6
(i+6k)+ai-
7i
6
i+6k
=
7
6
+
ai-
7i
6
i+6k

(其中n=6k+i,k≥0,i为{1,2,3,4,5,6}中的一个常数),
ai=
7i
6
时,对任意的n=6k+i有
ai
n
=
7
6

ai
7i
6
时,fk+1-fk=
ai-
7i
6
6(k+1)+i
-
ai-
7i
6
6k+i

=(ai-
7i
6
)(
1
6(k+1)+i
-
1
6k+i
)

=(ai-
7i
6
)
-6
[6(k+1)+i](6k+i)

①若ai
7i
6
,则对任意的k∈N有fk+1<fk,数列{
a6k+i
6k+i
}为单调减数列;
②若ai
7i
6
,则对任意的k∈N有fk+1>fk,数列{
a6k+i
6k+i
}为单调增数列;
综上,当ai=
7i
6
且i∈{1,2,3,4,5,6}时,数列{
an
n
}中必有某数重复出现无数次
当i=1时,a1=
7
6
符合要求;当i=2时,a2=
7×2
6
=
7
3
符合要求,
此时的a1=a2-b1=
4
3

当i=3时,a3=
7×3
6
=
7
2
符合要求,
此时的a2=a3-b2=
3
2
a1=a2-b1=
1
2

当i=4时,a4=
7×4
6
=
14
3
符合要求,
此时的a1=a4-b3-b2-b1=-
1
3

当i=5时,a5=
7×5
6
=
35
6
符合要求,
此时的a1=a5-b4-b3-b2-b1=-
1
6

当i=6时,a6=
7×6
6
=7
符合要求,
此时的a1=a6-b5-b4-b3-b2-b1=
1
2

即当a1∈{
7
6
4
3
1
2
-
1
3
-
1
6
}时,
数列{
an
n
}中必有某数重复出现无数次.
点评:熟练掌握等差数列的前n项和公式、“累加求和”、探究数列{bn}是一个以6为周期的循环数列、数列{a6n+i}均为以7为公差的等差数列,求出fn=
an
n
并探究其单调性是解题的关键.注意分类讨论思想方法的运用,本题较好的考查了学生的探究能力和计算能力,本题有一点的难度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1<0,
an+1
an
=
1
2
,则数列{an}是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,nan+1=2(n十1)an+n(n+1),(n∈N*),
(I)若bn=
ann
+1
,试证明数列{bn}为等比数列;
(II)求数列{an}的通项公式an与前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)已知数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-1(n≥2),且b1=a2,则|b1|+|b2|+…+|bn|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+3n+1,则数列{an}的通项公式为
an=
5
      n=1
2n+2
    n≥2
an=
5
      n=1
2n+2
    n≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n,那么它的通项公式为an=
2n
2n

查看答案和解析>>

同步练习册答案