精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Sn=n2+n,那么它的通项公式为an=
2n
2n
分析:由题意知得
a1=S1,n=1
an=Sn -Sn-1,n≥2
,由此可知数列{an}的通项公式an
解答:解:a1=S1=1+1=2,
an=Sn-Sn-1=(n2+n)-[(n-1)2+(n-1)]
=2n.
当n=1时,2n=2=a1
∴an=2n.
故答案为:2n.
点评:本题主要考查了利用数列的递推公式an=Sn-Sn-1求解数列的通项公式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案