精英家教网 > 高中数学 > 题目详情
设函数f(x)=ex(sinx-cosx),若0≤x≤2012π,则函数f(x)的各极大值之和为(  )
A、
eπ(1-e2012π)
1-e
B、
eπ(1-e1006π)
1-eπ
C、
eπ(1-e1006π)
1-e
D、
eπ(1-e2012π)
1-eπ
分析:先求出其导函数,利用导函数求出其单调区间,进而找到其极大值f(2kπ+π)=e2kπ+π[sin(2kπ+π)-cos(2kπ+π)]=e2kπ+π,再利用数列的求和方法来求函数f(x)的各极大值之和即可.
解答:解:因为函数f(x)=ex(sinx-cosx),
所以f'(x)=(ex)'(sinx-cosx)+ex(sinx-cosx)'=2exsinx,
∴x∈(2kπ,2kπ+π)时原函数递增,x∈(2kπ+π,2kπ+2π)时,函数递减.
故当x=2kπ+π时,f(x)取极大值,
其极大值为f(2kπ+π)=e2kπ+π[sin(2kπ+π)-cos(2kπ+π)]=e2kπ+π
又0≤x≤2012π,
∴函数f(x)的各极大值之和S=eπ+e+e+…+e2009π=
eπ[1-(e) 1005]
1-e
=
eπ(1-e2010π)
1-e

故选:A.
点评:本题主要考查利用导数研究函数的极值以及数列的求和.利用导数研究函数的单调性,求解函数的单调区间、极值、最值问题,是函数这一章最基本的知识,也是教学中的重点和难点,学生应熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ex-1-x-ax2
(1)若a=0,求f(x)的单调区间;
(2)若当x≥0时f(x)≥0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

18、设函数f(x)=ex[x2-(1+a)x+1](x∈R),
(I)若曲线y=f(x)在点P(0,f(0))处的切线与直线y=x+4平行.求a的值;
(II)求函数f(x)单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ex+aex(x∈R)是奇函数,则实数a=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ex
(I)求证:f(x)≥ex;
(II)记曲线y=f(x)在点P(t,f(t))(其中t<0)处的切线为l,若l与x轴、y轴所围成的三角形面积为S,求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ex(e为自然对数的底数),g(x)=x2-x,记h(x)=f(x)+g(x).
(1)h′(x)为h(x)的导函数,判断函数y=h′(x)的单调性,并加以证明;
(2)若函数y=|h(x)-a|-1=0有两个零点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案