精英家教网 > 高中数学 > 题目详情
12.在等比数列{an}中,a1=1,且a2是a1与a3-1的等差中项.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足${b_n}=\frac{{1+n(n+1){a_n}}}{n(n+1)}(n∈{N^*})$.求数列{bn}的前n项和$S_n^{\;}$.

分析 (1)设等比数列{an}的公比为q,运用等差数列的性质和等比数列的通项公式,解方程可得公比q,即可得到所求通项公式;
(2)化简bn=2n-1+($\frac{1}{n}$-$\frac{1}{n+1}$),运用分组求和和裂项相消求和,化简即可得到所求和.

解答 解:(1)设等比数列{an}的公比为q,
a2是a1与a3-1的等差中项,即有a1+a3-1=2a2
即为1+q2-1=2q,解得q=2,
即有an=a1qn-1=2n-1
(2)${b_n}=\frac{{1+n(n+1){a_n}}}{n(n+1)}(n∈{N^*})$=an+$\frac{1}{n(n+1)}$
=2n-1+($\frac{1}{n}$-$\frac{1}{n+1}$),
数列{bn}的前n项和$S_n^{\;}$=(1+2+22+…+2n-1)+(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)
=$\frac{1-{2}^{n}}{1-2}$+1-$\frac{1}{n+1}$=2n-$\frac{1}{n+1}$.

点评 本题考查等差数列和等比数列的通项和求和公式的运用,考查数列的求和方法:分组求和和裂项相消求和,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知:如图所示,一个圆锥的底面半径为30,高为40,在其中有一个高为20的内接圆柱.
(1)求圆柱的侧面积;
(2)求圆柱与圆锥的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设F为抛物线C:y2=-12x的焦点,过抛物线C外一点A作抛物线C的切线,切点为B.若∠AFB=90°,则点A的轨迹方程为x=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知幂函数y=(a2-2a-2)xa在实数集R上单调,那么实数a=(  )
A.一切实数B.3或-1C.-1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若非零向量$\vec a$与向量$\vec b$的夹角为钝角,$|{\vec b}|=2$,且当t=-2时,$|{\vec b-t\vec a}|$(t∈R)取最小值$\frac{6}{5}$,则$\vec a•({\vec b-\vec a})$等于(  )
A.$-\frac{48}{25}$B.-2C.$-\frac{11}{5}$D.$\frac{9}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.用秦九韶算法求多项式f(x)=5x5+2x4+3.5x3-2.6x2+1.7x-0.8,当x=1时的值的过程中v3=7.9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.平面内有n(n∈N*)个圆中,每两个圆都相交,每三个圆都不交于一点,若该n个圆把平面分成f(n)个区域,那么f(n)=n2-n+2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若关于x的方程(x-2)(x2-4x+m)=0有三个根,且这三个根恰好可以作为一个三角形的三条边的长,则m的取值范围是(3,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知菱形ABCD的边长为2,求向量$\overrightarrow{AB}$-$\overrightarrow{CB}$+$\overrightarrow{CD}$的模的长.

查看答案和解析>>

同步练习册答案