精英家教网 > 高中数学 > 题目详情

已知中心在坐标原点焦点在轴上的椭圆C,其长轴长等于4,离心率为

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)若点(0,1), 问是否存在直线与椭圆交于两点,且?若存在,求出的取值范围,若不存在,请说明理由.

 

【答案】

(Ⅰ)  (Ⅱ) 存在这样的直线,其斜率的取值范围是

【解析】

试题分析:(Ⅰ)由题意可设椭圆的标准方程为            1分

则由长轴长等于4,即2a=4,所以a=2.                 2分

,所以,                       3分

又由于                          4分

所求椭圆C的标准方程为                   5分

(Ⅱ)假设存在这样的直线,设,的中点为

因为所以所以  ①

(i)其中若时,则,显然直线符合题意;

(ii)下面仅考虑情形:

,得,

,得 ②            7分

.               8分

代入①式得,即,解得               11分

代入②式得,得

综上(i)(ii)可知,存在这样的直线,其斜率的取值范围是          13分

考点:椭圆方程性质及直线与椭圆的位置关系

点评:直线与椭圆相交时常将直线与椭圆联立方程组,利用韦达定理找到根与系数的关系,进而将转化为点的坐标表示,其中要注意条件不要忽略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知中心为坐标原点O,焦点在x轴上的椭圆的两个短轴端点和左右焦点所组成的四边形是面积为2的正方形,
(1)求椭圆的标准方程;
(2)过点P(0,2)的直线l与椭圆交于点A,B,当△OAB面积最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•福建模拟)已知中心的坐标原点,以坐标轴为对称轴的双曲线C过点Q(2,
3
3
)
,且点Q在x轴上的射影恰为该双曲线的一个焦点F1
(Ⅰ)求双曲线C的方程;
(Ⅱ)命题:“过椭圆
x2
25
+
y2
16
=1
的一个焦点F作与x轴不垂直的任意直线l”交椭圆于A、B两点,线段AB的垂直平分线交x轴于点M,则
|AB|
|FM|
为定值,且定值是
10
3
”.命题中涉及了这么几个要素:给定的圆锥曲线E,过该圆锥曲线焦点F的弦AB,AB的垂直平分线与焦点所在的对称轴的交点M,AB的长度与F、M两点间距离的比值.试类比上述命题,写出一个关于抛物线C的类似的正确命题,并加以证明
(Ⅲ)试推广(Ⅱ)中的命题,写出关于圆锥曲线(椭圆、双曲线、抛物线)的统一的一般性命题(不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)已知中心在坐标原点焦点在x轴上的椭圆C,其长轴长等于4,离心率为
2
2

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点E(0,1),问是否存在直线l:y=kx+m与椭圆C交于M,N两点,且|ME|=|NE|?若存在,求出k的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年江西省高三热身卷数学(理)试题 题型:解答题

(本题12分)已知中心为坐标原点O,焦点在x轴上的椭圆的两个短轴端点和左右焦点所组成的四边形是面积为2的正方形,

(1)求椭圆的标准方程;

(2)过点P(0,2)的直线l与椭圆交于点A,B,当△OAB面积最大时,求直线l的方程。

 

查看答案和解析>>

科目:高中数学 来源:2007年普通高等学校招生全国统一考试理科数学卷(山东) 题型:解答题

(本小题满分12分)已知椭圆C的中心在坐标原点,焦点在轴上,椭圆C上的点到焦点的距离的最大值为3,最小值为1.

(I)求椭圆C的标准方程;

(II)若直线与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线过定点,并求出该定点的坐标.

 

查看答案和解析>>

同步练习册答案