精英家教网 > 高中数学 > 题目详情
设a1=2,a2=4,数列{bn}满足:bn=an+1-an,bn+1=2bn+2.
(1)求b1、b2
(2)求证数列{bn+2}是等比数列(要指出首项与公比);
(3)求数列{an}的通项公式.
分析:(1)利用已知递推式即可得出;
(2)利用bn+1=2bn+2,变形为bn+2+2=2(bn+2).即可得出;
(3)利用(2)及其“累加求和”即可得出.
解答:(1)解:b1=a2-a1=4-2=2,b2=2b1+2=2×2+2=6.
(2)证明:∵bn+1=2bn+2,∴bn+2+2=2(bn+2).
∴数列{bn+2}是以b1+2=4为首项,2为公比的等比数列.
(3)由(2)可得:bn+2=4×2n-1=2n+1
bn=2n+1-2
an-an-1=2n-2
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=(2n-2)+(2n-1-2)+…+(22-2)+2
=2n+2n-1+…+22+2-2(n-1)
=
2(2n-1)
2-1
-2n+2
=2n+1-2n.
点评:变形利用等比数列的通项公式和掌握“累加求和”的方法是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a1=2,a2=4,数列{bn}满足:bn=an+1-an,bn+1=2bn+2,
(1)求证:数列{bn+2}是等比数列(要指出首项与公比),
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a1=2,a2=4,数列{bn}满足:bn=an+1-an,bn+1=2bn+2.求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a1=2,a2=4,数列{bn}满足:bn=an+1-an,bn+1=2bn+2,
(1)求证:数列{bn+2}是等比数列(要指出首项与公比),
(2)求数列{an}的通项公式.
(3)数列{an+1}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省青岛市即墨一中高二(上)期中数学试卷(解析版) 题型:解答题

设a1=2,a2=4,数列{bn}满足:bn=an+1-an,bn+1=2bn+2,
(1)求证:数列{bn+2}是等比数列(要指出首项与公比),
(2)求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案