精英家教网 > 高中数学 > 题目详情
已知双曲线C:x2-
y2
3
=1,直线l:y=mx-m+
3
(m∈R),直线l与双曲线C有且只有一个公共点,则m的所有取值个数是(  )
A、1B、2C、3D、4
考点:双曲线的简单性质
专题:计算题,直线与圆,圆锥曲线的定义、性质与方程
分析:求出直线恒过定点P(1,
3
),再由双曲线x2-
y2
3
=1的渐近线方程为:y=±
3
x,结合双曲线的性质与图形可得过定点P(1,
3
)与双曲线有且只有一个公共点的直线的个数.
解答: 解:直线l:y=mx-m+
3
(m∈R),即为
m(x-1)=y-
3
,恒过定点P(1,
3
),
双曲线的渐近线方程为y=±
3
x,
则P在渐近线y=
3
x上,
则过P作与渐近线y=-
3
x平行的直线,与双曲线只有一个交点;
过P作与x轴垂直的直线与双曲线只有一个交点,但m不存在.
则m的所有取值个数为1.
故选A.
点评:本题以双曲线为载体,主要考查了直线与圆锥曲线的综合问题.突出考查了双曲线的几何性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在四棱锥S-ABCD中,AB∥CD,AB=BC=2,CD=SD=1,BC⊥CD,M为SB的中点,DS⊥面SAB.
(1)求证:CM∥面SAD;
(2)求证:CD⊥SD;
(3)求四棱锥S-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图为函数f(x)=
x
x2+1
的部分图象,ABCD是矩形,A、B在图象上,将此矩形(AB边在第一象限)绕x轴旋转得到的旋转体的体积的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
4
+
y2
3
=1的左右焦点分别为F1,F2,过F1的直线l与椭圆相交于A、B两点,则|AF2|+|BF2|的最大值为(  )
A、5B、3C、4D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方形ABCD中,PA⊥底面ABCD,且PA=AB=2,E、F分别是AB与PD的中点.
(1)求证:PC⊥AF;
(2)求证:AF∥平面PEC;
(3)求证:PD⊥平面AFE.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin(-2x+
π
6
)
求:
(1)函数的最小正周期;
(2)函数的单调增区间;
(3)若-
π
3
≤x≤
π
6
,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

“x-1≠0”是“(x-1)(x-2)≠0”的(  )
A、充分非必要条件
B、必要非充分条件
C、充分必要条件
D、既不充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

某校50名学生参加2013年全国数学联赛初赛,成绩全部介于90分到140分之间.将成绩结果按如下方式分成五组:第一组[90,100),第二组[100,110),第五组[130,140].按上述分组方法得到的频率分布直方图如图所示.
(1)若成绩大于或等于100分且小于120分认为是良好的,求该校参赛学生在这次数学联赛中成绩良好的人数;
(2)若从第一、五组中共随机取出两个成绩,求这两个成绩差的绝对值大于30分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二项式(x-
1
x
n的展开式中含x3的项是第4项,则n的值是
 

查看答案和解析>>

同步练习册答案