精英家教网 > 高中数学 > 题目详情
(2012•汕头二模)在数列{an}中,a1=1、a2=
1
4
,且an+1=
(n-1)an
n-an
(n≥2)

(Ⅰ) 求a3、a4,猜想an的表达式,并加以证明;
(Ⅱ) 设bn=
anan+1
an
+
an+1
,求证:对任意的自然数n∈N*,都有b1+b2+…+bn
n
3
分析:(Ⅰ) 利用数列递推式,代入计算可得a3、a4,由此猜想an的表达式,再利用数学归纳法进行证明,证明n=k+1时,由题设与归纳假设,可得结论;
(Ⅱ)先对通项化简,再用裂项法求和,进而利用分析法进行证明即可.
解答:(Ⅰ) 解:(1)∵a1=1、a2=
1
4
,且an+1=
(n-1)an
n-an
(n≥2)

∴a3=
a2
2-a2
=
1
7
a4=
2a3
3-a3
=
1
10

故可以猜想an=
1
3n-2
,下面利用数学归纳法加以证明:
(i) 显然当n=1,2,3,4时,结论成立,
(ii) 假设当n=k(k≥4),结论也成立,即ak=
1
3k-2

那么当n=k+1时,由题设与归纳假设可知:ak+1=
(k-1)ak
k-ak
=
(k-1)×
1
3k-2
k-
1
3k-2
=
1
3(k+1)-2

即当n=k+1时,结论也成立,
综上,an=
1
3n-2
成立.
(Ⅱ)证明:bn=
anan+1
an
+
an+1
=
1
3
(
3n+1
-
3n-2
)

所以b1+b2+…+bn=
1
3
[(
4
-1)+(
7
-
4
)+…+(
3n+1
-
3n-2
)]
=
1
3
(
3n+1
-1)

所以只需要证明
1
3
(
3n+1
-1)<
n
3

只需证明
3n+1
3n
+1

只需证明:3n+1<3n+2
3n
+1
只需证明0<2
3n
,显然成立
所以对任意的自然数n∈N*,都有b1+b2+…+bn
n
3
点评:本题考查数列递推式,考查数列通项的猜想与证明,考查数列的求和与分析法证明的运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•汕头二模)已知函数f(x)=x2-(a+2)x+alnx,其中常数a>0.
(1)当a>2时,求函数f(x)的单调递增区间;
(2)当a=4时,若函数y=f(x)-m有三个不同的零点,求m的取值范围;
(3)设定义在D上的函数y=h(x)在点p(x0,h(x0))处的切线方程为l:y=g(x),当x≠x0时,若
h(x)-g(x)x-x0
>0
在D内恒成立,则称P为函数y=h(x)的“类对称点”,请你探究当a=4时,函数y=f(x)是否存在“类对称点”,若存在,请最少求出一个“类对称点”的横坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•汕头二模)已知函数f(x)=2cos2
x
2
-
3
sinx

(Ⅰ)求函数f(x)的最小正周期和值域;
(Ⅱ)若a为第二象限角,且f(a-
π
3
)=
1
3
,求
cos2a
1-tana
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•汕头二模)从1,2,3,4,5中不放回地依次取2个数,事件A=“第一次取到的是奇数”,B=“第二次取到的是奇数”,则P(B|A)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•汕头二模)双曲线x2-
y24
=1的渐近线方程是
y=±2x
y=±2x

查看答案和解析>>

同步练习册答案