精英家教网 > 高中数学 > 题目详情
已知α,β,γ,满足0<α<β<γ<2π,若?x∈R,cos(x+α)+cos(x+β)+cos(x+γ)=0,则γ-α=
3
3
分析:设f(x)=cos(x+α)+cos(x+β)+cos(x+γ),通过赋值f(-α)=0,f(-β)=0,f(-γ)=0,可求得cos(β-α)=cos(γ-β)=cos(γ-α)=-
1
2
,结合已知0<α<β<γ<2π,即可求得答案.
解答:解:设f(x)=cos(x+α)+cos(x+β)+cos(x+γ),
由题意知,?x∈R,f(x)=0恒成立,
则f(-α)=f(-β)=f(-γ)=0,
∴cos(β-α)+cos(γ-α)=cos(β-α)+cos(γ-β)=cos(γ-α)+cos(γ-β)=-1,
故cos(β-α)=cos(γ-β)=cos(γ-α)=-
1
2

由于0<α<β<γ<2π,
故β-α,γ-β,γ-α∈{
3
3
},
从而γ-α=
3
点评:本题考查两角和与差的余弦函数,突出考查构造函数思想与赋值法的应用,考查综合分析与运算的能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列an,bn,xn满足a1=b1=2,an+1=bn+1+4bn,bn+1=an+bnxn=
an
bn

(1)填空:当n≥2时,xn
 
1.(填>,=,<中一个)
(2)求证:xn+1与xn中一个比
5
大,另一个比
5
小,并指出xn+1与xn中哪一个更接近于
5

(3)若数列{|xn-
5
|}
的前n项和为Sn,求证:Sn
5
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
c
满足:|
a
|=1,|
b
|=2,
c
=
a
+
b
,且
c
a
,则
a
b
的夹角大小是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A∈[0,2π],且满足sin(2A+
π
6
)+sin(2A-
π
6
)+2cos2A≥2

(1)求角A的取值集合M;
(2)若函数f(x)=cos2x+4ksinx(k>0,x∈M)的最大值是
3
2
,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn,已知Sn=
n
2
 
+3n
2
,数列{bn}满足(bn+1)2=bnbn+2(n∈N*)且b2=4,b5=32.
(1)分别求出数列{an}和数列{bn}的通项公式;
(2)若数列{cn}满足cn=
an,n为奇数
bn,n为偶数
,求数列{cn}的前n项和Tn
(3)设P=
n2
4
+24n-
7
12
,(n∈N*)
,当n为奇数时,试判断方程Tn-P=2013是否有解,若有请求出方程的解,若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题
(1).函数f(x)=
a2-x2
|x+a|-a
(a>0)
,既不是奇函数,又不是偶函数;
(2)0<x<1,a,b∈R,且a•b>0,则函数y=
a2
x
+
b2
1-x
的最小值是a2+b2
(3)已知向量
OP1
OP2
OP3
满足条件
OP1
+
OP2
+
OP3
=
0
,且|
OP1
|=|
OP2
|=|
OP3
|=1
,则△P1P2P3为正三角形;
(4)已知a>b>c,若不等式
1
a-b
+
1
b-c
k
a-c
恒成立,则k∈(0,2);
其中正确命题的有
(3)
(3)
(填出满足条件的所有序号)

查看答案和解析>>

同步练习册答案