精英家教网 > 高中数学 > 题目详情
11.作已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点为F1,F2,离心率为$\frac{\sqrt{2}}{2}$,过F2的直线l交C于M,N两点,若△MF1N的周长为8.
(1)求椭圆C的标准方程;
(2)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.

分析 (1)由题意可得4a=8,结合e=$\frac{\sqrt{2}}{2}$及隐含条件求得a,b的值,则椭圆方程可求;
(2)设出A、B的坐标A(t,2),B(x0,y0),x0≠0,利用OA⊥OB把A的坐标用B的坐标表示,求出线段AB长度(用含有B的横坐标的代数式表示),再利用基本不等式求出AB长度的最小值.

解答 解:(1)由题意可知,$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{4a=8}\end{array}\right.$,解得a=2,c=$\sqrt{2}$,
∴b2=a2-c2=4-2=2,
∴椭圆C的标准方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$;
(2)设A(t,2),B(x0,y0),x0≠0,则
∵OA⊥OB,∴$\overrightarrow{OA}•\overrightarrow{OB}=0$,则tx0+2y0=0,
∴t=-$\frac{2{y}_{0}}{{x}_{0}}$,
∵x02+2y02=4,
∴|AB|2=(x0-t)2+(y0-2)2=(x0+$\frac{2{y}_{0}}{{x}_{0}}$)2+$({y}_{0}+2)^{2}$
=x02+y02+$\frac{4{{y}_{0}}^{2}}{{{x}_{0}}^{2}}$+4=x02+$\frac{4-{{x}_{0}}^{2}}{2}$+$\frac{2(4-{{x}_{0}}^{2})}{{{x}_{0}}^{2}}$+4=$\frac{{{x}_{0}}^{2}}{2}+\frac{8}{{{x}_{0}}^{2}}$+4(0<x02≤4),
∵$\frac{{{x}_{0}}^{2}}{2}+\frac{8}{{{x}_{0}}^{2}}$≥4(0<x02≤4),
当且仅当$\frac{{{x}_{0}}^{2}}{2}=\frac{8}{{{x}_{0}}^{2}}$,即x02=4时等号成立,
∴|AB|2≥8.
∴线段AB长度的最小值为2$\sqrt{2}$.

点评 本题考查椭圆的方程与性质,考查基本不等式的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如果执行下面的程序框图,输入n=6,m=4,求输出的p=?(要求必要的书写,不能只有数字!)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,地面上有一竖直放置的圆形标志物,圆心为C,与地面的接触点为G.与圆形标志物在同一平面内的地面上点P处有一个观测点,且PG=50m.在观测点正前方10m处(即PD=10m)有一个高为10m(即ED=10m)的广告牌遮住了视线,因此在观测点所能看到的圆形标志的最大部分即为图中从A到F的圆弧.
(1)若圆形标志物半径为25m,以PG所在直线为x轴,G为坐标原点,建立直角坐标系,求圆C和直线PF的方程;
(2)若在点P处观测该圆形标志的最大视角(即∠APF)的正切值为$\frac{41}{39}$,求该圆形标志物的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知抛物线y=4ax2(a≠0)的准线方程为y=$\frac{1}{16}$,则a的值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知曲线C1:$\frac{{x}^{2}}{8-k}$-$\frac{{y}^{2}}{4}$=1与C2:$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{6-k}$=1都是双曲线,则(  )
A.0<k<8,C1与C2的实轴长相等B.k<6,C1与C2的实轴长相等
C.0<k<8,C1与C2的焦距相等D.k<6,C1与C2的焦距相等

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l:y=x+b,椭圆C:x2+2y2=4.
(1)若直线和椭圆有两个交点,求b的范围;
(2)若直线被椭圆截得的弦长为$\frac{4}{3}$$\sqrt{2}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.过定点A(0,a)在x轴上截得弦长为2a的动圆圆心的轨迹方程是(  )
A.x2+(y-a)2=a2B.y2=2axC.(x-a)2+y2=a2D.x2=2ay

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\frac{\sqrt{4-{x}^{2}}}{|x+3|-3}$,若f(a)=$\frac{5\sqrt{7}}{3}$,则f(-a)=(  )
A.$\frac{5\sqrt{7}}{3}$B.-$\frac{5\sqrt{7}}{3}$C.2$\sqrt{7}$D.4$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线l:mx+2y+6=0,向量(1-m,1)与l平行,则m的值为(  )
A.-1B.1C.2D.-1或2

查看答案和解析>>

同步练习册答案