精英家教网 > 高中数学 > 题目详情

【题目】已知a≥0,函数f(x)=(x2﹣2ax)ex , 若f(x)在[﹣1,1]上是单调减函数,则a的取值范围是(
A.0<a<
B. <a<
C.a≥
D.0<a<

【答案】C
【解析】解:∵f′(x)=[x2﹣2(a﹣1)x﹣2a]ex , ∵f(x)在[﹣1,1]上是单调减函数,
∴f′(x)≤0,x∈[﹣1,1],
∴x2﹣2(a﹣1)x﹣2a≤0,x∈[﹣1,1],
设g(x)=x2﹣2(a﹣1)x﹣2a,




故选:C.
【考点精析】关于本题考查的函数单调性的判断方法,需要了解单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合 A={x|﹣1<x<1},B={x|0<x<2},集合 C={x|x>a}.

(1)求集合A UCRB;
(2)若A∩C≠φ,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中与函数y=x相等的函数是( )
A.y=( 2
B.y=
C.y=2
D.y=log22x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F为抛物线C:y2=4x的焦点,点P是准线l上的动点,直线PF交抛物线C于A,B两点,若点P的纵坐标为m(m≠0),点D为准线l与x轴的交点. (Ⅰ)求直线PF的方程;
(Ⅱ)求△DAB的面积S范围;
(Ⅲ)设 ,求证λ+μ为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2﹣6x+5<0},B={x| <2x﹣4<16},C={x|﹣a<x≤a+3}
(1)求A∪B和(RA)∩B
(2)若A∪C=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆 过点 ,离心率为 ,左、右焦点分别为F1 , F2 , 过F1的直线交椭圆于A,B两点. (Ⅰ)求椭圆C的方程;
(Ⅱ)当△F2AB的面积为 时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在 上的函数 满足 ,当 时, ,其中 ,若方程 恰有3个不同的实数根,则 的取值范围为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x)=x3﹣ax2+1在(1,3)内单调递减,则实数a的范围是(
A.[ ,+∞)
B.(﹣∞,3]
C.(3,
D.(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)其中ω>0,|φ|<
(1)若cos cosφ﹣sin sinφ=0.求φ的值;
(2)在(1)的条件下,若函数f(x)的图象的相邻两条对称轴之间的距离等于 ,求函数f(x)的解析式;并求最小正实数m,使得函数f(x)的图象象左平移m个单位所对应的函数是偶函数.

查看答案和解析>>

同步练习册答案