精英家教网 > 高中数学 > 题目详情
7.已知定义域为R的奇函数f(x)的导数为f′(x),当x≠0时,f′(x)+$\frac{f(x)}{x}$>0,若a=$\frac{1}{2}$f($\frac{1}{2}$),b=-2f(-2),c=ln$\frac{1}{2}$f(ln2),则下列关于a,b,c的大小关系正确的是(  )
A.a>b>cB.a>c>bC.c>b>aD.b>a>c

分析 利用条件构造函数h(x)=xf(x),然后利用导数研究函数h(x)的单调性,利用函数的单调性比较大小

解答 解:设h(x)=xf(x),
∴h′(x)=f(x)+x•f′(x),
∵y=f(x)是定义在实数集R上的奇函数,
∴h(x)是定义在实数集R上的偶函数,
当x>0时,h'(x)=f(x)+x•f′(x)>0,
∴此时函数h(x)单调递增.
∵a=$\frac{1}{2}$f($\frac{1}{2}$)=h($\frac{1}{2}$),b=-2f(-2)=2f(2)=h(2),c=(ln$\frac{1}{2}$)f(ln2)=-h(ln2),
又2>ln2>$\frac{1}{2}$,
∴b>-c>a.
∴b>a>c.
故选:D.

点评 本题主要考查如何构造新的函数,利用单调性比较大小,是常见的题目.本题属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知数列{an}满足${a_1}=\frac{1}{5}$,且当n>1,n∈N*时,有$\frac{{{a_{n-1}}}}{a_n}=\frac{{2{a_{n-1}}+1}}{{1-2{a_n}}}$,
(1)求证:数列$\{\frac{1}{a_n}\}$为等差数列;
(2)试问a1•a2是否是数列{an}中的项?如果是,是第几项;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设复数z满足4z+2$\overline{z}$=3$\sqrt{3}$+i,求复数z的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若a,b,c为实数,且a<b<0,则下列不等式正确的是(  )
A.$\frac{1}{a}<\frac{1}{b}$B.$a+\frac{1}{b}>b+\frac{1}{a}$C.$b+\frac{1}{a}>a+\frac{1}{b}$D.$\frac{b}{a}<\frac{b+1}{a+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知数列{an}中,a1=0,an+1=$\frac{{a}_{n}-\sqrt{3}}{\sqrt{3}{a}_{n}+1}$(n∈N*),则a1+a2+…a2015=(  )
A.-$\sqrt{3}$B.0C.$\sqrt{3}$D.1008$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知非零向量$\overrightarrow{a}$、$\overrightarrow{b}$ 满足|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|且3$\overrightarrow{a}$2=$\overrightarrow{b}$2,则$\overrightarrow{a}$与$\overrightarrow{b}$-$\overrightarrow{a}$的夹角为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=lnx-$\frac{1}{2}$ax2-bx
(1)当a=b=$\frac{1}{2}$时,求函数f(x)的单调区间;
(2)当a=0,b=-1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知公差不为0的等差数列{an}满足a1=1,且a1、a2、a4为等比数列{bn}的前三项.
(1)求数列{an}、{bn}的通项公式;
(2)求数列{$\frac{{a}_{n}}{{b}_{n}{b}_{n+1}}$}的前n项和;
(3)数列{anbn}中是否有三项成等差数列,若有,请写出一组;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知:sinθ+cosθ=$\frac{\sqrt{5}}{5}$($\frac{π}{2}$<θ<π),则tanθ=-2.

查看答案和解析>>

同步练习册答案