精英家教网 > 高中数学 > 题目详情
12.已知非零向量$\overrightarrow{a}$、$\overrightarrow{b}$ 满足|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|且3$\overrightarrow{a}$2=$\overrightarrow{b}$2,则$\overrightarrow{a}$与$\overrightarrow{b}$-$\overrightarrow{a}$的夹角为$\frac{2π}{3}$.

分析 根据向量的模相等得到,得到向量$\overrightarrow{a}$、$\overrightarrow{b}$ 垂直,利用数量积的定义可求$\overrightarrow{a}$与$\overrightarrow{b}$-$\overrightarrow{a}$的夹角的余弦值.

解答 解:因为|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,所以|$\overrightarrow{a}$+$\overrightarrow{b}$|2=|$\overrightarrow{a}$-$\overrightarrow{b}$|2,得到$\overrightarrow{a}•\overrightarrow{b}$=0,又3$\overrightarrow{a}$2=$\overrightarrow{b}$2,所以$\sqrt{3}$|$\overrightarrow{a}|$=|$\overrightarrow{b}$|,|
所以$\overrightarrow{a}$与$\overrightarrow{b}$-$\overrightarrow{a}$的夹角的余弦值为$\frac{\overrightarrow{a}•(\overrightarrow{b}-\overrightarrow{a})}{|\overrightarrow{a}||\overrightarrow{b}-\overrightarrow{a}|}$=$\frac{-{\overrightarrow{a}}^{2}}{|\overrightarrow{a}|\sqrt{4{\overrightarrow{a}}^{2}}}$=$-\frac{1}{2}$,
所以$\overrightarrow{a}$与$\overrightarrow{b}$-$\overrightarrow{a}$的夹角为$\frac{2π}{3}$;
故答案为:$\frac{2π}{3}$.

点评 本题考查了平面向量的数量积、模的运算;关键是由已知等式得到两个向量垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若$(\sqrt{3}b-c)cosA=acosC$,则cosA=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知Sn是正项数列{an}前n项和,对任意n∈N*,总有Sn=$\frac{1}{2}$an+$\frac{2}{{a}_{n}}$,则an=2($\sqrt{n}$-$\sqrt{n-1}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}的前n项和为sn,且sn=1-2+3-4+…+(-1)n-1n,则s4m+s2m+1+s2m+3的值为(  )
A.4mB.4-mC.0D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知定义域为R的奇函数f(x)的导数为f′(x),当x≠0时,f′(x)+$\frac{f(x)}{x}$>0,若a=$\frac{1}{2}$f($\frac{1}{2}$),b=-2f(-2),c=ln$\frac{1}{2}$f(ln2),则下列关于a,b,c的大小关系正确的是(  )
A.a>b>cB.a>c>bC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知甲、乙、丙、丁、戊、己等6人.(以下问题用数字作答)
(1)邀请这6人去参加一项活动,必须有人去,去几人自行决定,共有多少种不同的情形?
(2)这6人同时加入6项不同的活动,每项活动限1人,其中甲不参加第一项活动,乙不参加第三项活动,共有多少种不同的安排方法?
(3)将这6人作为辅导员安排到3项不同的活动中,每项活动至少安排1名辅导员;求丁、戊、己恰好被安排在同一项活动中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.“φ=π”是“函数f(x)=sin(x+φ)为奇函数”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.非充分非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.当实数m取何值时,在复平面内与复数z=(m2-4m)+(m2-m-6)i对应点满足下列条件?
(Ⅰ)在第三象限;
(Ⅱ)在直线x-y+3=0上.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.二次函数y=a(a+1)x2-(2a+1)x+1,当a=1,2,3…n时,其抛物线在x轴上截得的线段长度依次为d1,d2,d3…dn,则$\underset{lim}{n→∞}$(d1+d2+…+dn)=1.

查看答案和解析>>

同步练习册答案