精英家教网 > 高中数学 > 题目详情

(本小题满分14分)在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1)。将△AEF沿EF折起到DA1EF的位置,使二面角A1-EF-B成直二面角,连结A1B、A1P(如图2)

(Ⅰ)求证:A1E⊥平面BEP;

(Ⅱ)求直线A1E与平面A1BP所成角的大小。

 

【答案】

(I)见解析;(II)直线A1E与面A1BP所成角为60o

【解析】本试题主要是考查了折叠图的运用。求证线面的垂直和线面较大 求解的综合运用。

(1)由于在图1中,取BE的中点D,连结DF,

∵AE∶EB=CF∶FA=1∶2,∴AF=AD=2,而∠A=60o,∴△ADF为正三角形。

又AE=DE=1,∴EF⊥AD。并且在图2中,A1E⊥EF,BE⊥EF,∴∠A1EB为二面角A1-EF-B的一个平面角,那么利用条件可证明。

(2))利用三垂线的逆定理作出线面角。设A1E在面A1BP内的射影为A1Q,且A1Q交BP于Q,

则∠EA1Q就是A1E与面A1BP所成的角,然后借助于直角三角形求解。

解:不妨设正三角形的边长为3,则

(I)在图1中,取BE的中点D,连结DF,

∵AE∶EB=CF∶FA=1∶2,∴AF=AD=2,而∠A=60o,∴△ADF为正三角形。

又AE=DE=1,∴EF⊥AD。

在图2中,A1E⊥EF,BE⊥EF,∴∠A1EB为二面角A1-EF-B的一个平面角,

由题设条件知此二面角为直二面角,∴A1E⊥BE。

又BEEF=E,∴A1E⊥面BEF,即A1E⊥面BEP。  --------------------------------7分

(II)在图2中,A1E⊥面BEP,∴A1E⊥BP,∴BP垂直于A1E在面A1BP内的射影(三垂线定理的逆定理)

设A1E在面A1BP内的射影为A1Q,且A1Q交BP于Q,

则∠EA1Q就是A1E与面A1BP所成的角,且BP⊥A1Q。

在△EBP中,∵BE=BP=2,∠EBP=60o,∴△EBP为正三角形,∴BE=EP。

又A1E⊥面BEP,∴A1B=A1P,∴Q为BP的中点,且EQ=,而A1E=1,

∴在Rt△A1EQ中,,即直线A1E与面A1BP所成角为60o

----------------------------14分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案