精英家教网 > 高中数学 > 题目详情
(2013•东城区一模)数列{an}的各项排成如图所示的三角形形状,其中每一行比上一行增加两项,若an=an(a≠0),则位于第10行的第8列的项等于
a89
a89
,a2013在图中位于
第45行的第77列
第45行的第77列
.(填第几行的第几列)
分析:①由于每行的所有数的个数形成等差数列,故可得到前9行的数的个数,从而得出答案;
②由①可知前k行所有ai的个数为b1+b2+…bk=1+3+…(2k-1)=k2.解出(k-1)2≤2013即可得出答案.
解答:解:①设每行的数的个数为数列{bn},则此数列为首项为1,公差为2的等差数列,∴bn=1+(n-1)×2=2n-1.
于是前9行所有an的个数为b1+b2+…+b9=
9(1+2×9-1)
2
=81.
∴位于第10行的第8列的项等于a81+8=a89=a89
②由①可知:前k行所有ai的个数为b1+b2+…bk=1+3+…(2k-1)=k2
由(k-1)2<2013,解得k<1+
2013

而442<2013<452,∴k<1+44=45.
∴前44行的所有数ai的个数为442=1936.
而1936+77=2013,
∴a2013在图中位于第45行的第77 列.
故答案分别为a89,第45行的第77 列.
点评:正确理解每行的所有数的个数形成等差数列,利用等差数列的通项公式和前可知前k行所有ai的个数为b1+b2+…bk=1+3+…(2k-1)=k2是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•东城区一模)设A是由n个有序实数构成的一个数组,记作:A=(a1,a2,…,ai,…,an).其中ai(i=1,2,…,n)称为数组A的“元”,S称为A的下标.如果数组S中的每个“元”都是来自 数组A中不同下标的“元”,则称A=(a1,a2,…,an)为B=(b1,b2,…bn)的子数组.定义两个数组A=(a1,a2,…,an),B=(b1,b2,…,bn)的关系数为C(A,B)=a1b1+a2b2+…+anbn
(Ⅰ)若A=(-
1
2
1
2
)
,B=(-1,1,2,3),设S是B的含有两个“元”的子数组,求C(A,S)的最大值;
(Ⅱ)若A=(
3
3
3
3
3
3
)
,B=(0,a,b,c),且a2+b2+c2=1,S为B的含有三个“元”的子数组,求C(A,S)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区一模)某游戏规则如下:随机地往半径为1的圆内投掷飞标,若飞标到圆心的距离大于
1
2
,则成绩为及格;若飞标到圆心的距离小于
1
4
,则成绩为优秀;若飞标到圆心的距离大于
1
4
且小于
1
2
,则成绩为良好,那么在所有投掷到圆内的飞标中得到成绩为良好的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区一模)函数f(x)=sin(x-
π
3
)
的图象为C,有如下结论:
①图象C关于直线x=
6
对称;
②图象C关于点(
3
,0)
对称;
③函数f(x)在区间[
π
3
6
]
内是增函数,
其中正确的结论序号是
①②③
①②③
.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区一模)已知全集U={1,2,3,4},集合A={1,2},那么集合?UA为(  )

查看答案和解析>>

同步练习册答案