精英家教网 > 高中数学 > 题目详情

函数y=-x2-4x-7的顶点坐标为


  1. A.
    (2,-3)
  2. B.
    (-2,3)
  3. C.
    -2,-3)
  4. D.
    (2,3)
C
分析:由已知中函数y=-x2-4x-7的解析式,我们求出函数的顶点式解析式,进而得到函数y=-x2-4x-7图象的顶点坐标.
解答:∵y=-x2-4x-7
=-(x+2)2-3.
故函数y=-x2-4x-7的顶点坐标为(-2,-3);
故选C.
点评:本题考查的知识点是二次函数的图象和性质,其中将函数的解析式由一般式化为顶点式是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、使函数y=x2-4x+5具有反函数的一个条件是
x≥2
.(只填上一个条件即可,不必考虑所有情形).

查看答案和解析>>

科目:高中数学 来源: 题型:

13、函数y=x2-4x,其中x∈[-3,3],则该函数的值域为
[-4,21]

查看答案和解析>>

科目:高中数学 来源: 题型:

2、函数y=x2-4x+1,x∈[1,5]的值域是
[-3,6]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=-x2+4x+5
(1)配成顶点式:y=-x2+4x+5=-(…)2+(…)
(2)画出二次函数y=-x2+4x+5的图象
(3)根据二次函数的图象写出-x2+4x+5≥0的解集
{x|-1≤x≤5}
{x|-1≤x≤5}
根据二次函数的图象写出-x2+4x+5<0的解集
{x|x<-1或x>5}
{x|x<-1或x>5}

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
-x2+4x-3
+3
x+1
的值域为
[
9-
17
8
9+
17
8
]
[
9-
17
8
9+
17
8
]

查看答案和解析>>

同步练习册答案