精英家教网 > 高中数学 > 题目详情
精英家教网直四棱柱ABCD-A1B1C1D1中,∠ADC=90°,△ABC为等边三角形,且AA1=AD=DC=2.
(1)求AC1与BC所成角的余弦值;
(2)求二面角B-AC1-C的大小;
(3)设M是BD上的点,当DM为何值时,D1M⊥平面A1C1D?并证明你的结论.
分析:(1)先将CB平移到C1B1,根据两异面所成角的定义可知∠AC1B1(或其补角)是AC1与BC所成的角,在三角形AB1C1中利用余弦定理解出此角即可;
(2)设AC∩BD=O,过O作OH⊥AC1交AC1于H,连接BH,根据二面角平面角的定义可知∠OHB为二面角B-AC1-C的平面角,在Rt△BOH中,求出此角即可;
(3)在BD上取点M,使得OM=OD,连接AM,CM,欲证D1M⊥平面A1C1D,可证D1M⊥A1D,D1M⊥A1C1,又A1D∩A1C1=A1,求出此时的DM.
解答:解:(Ⅰ)∵ABCD-A1B1C1D1是直四棱柱,
∴C1C∥B1B,且C1C=B1B,
∴四边形C1CBB1是平行四边形,
∴C1B1∥CB,
即∠AC1B1(或其补角)是AC1与BC所成的角.
连接AB1,在三角形AB1C1中,AC1=AB1=2
3
C1B1=2
2

cosAC1B1=
A
C
2
1
+B1
C
2
1
-A
B
2
1
2AC1B1C1
=
12+8-12
2•2
3
•2
2
=
6
6

故AC1与BC所成角的余弦值为
6
6
.(5分)
精英家教网
(Ⅱ)设AC∩BD=O,则BO⊥AC,又BO⊥C1C,AC∩C1C=C,
∴BO⊥平面AC1C.
过O作OH⊥AC1交AC1于H,连接BH,则BH⊥AC1
∴∠OHB为二面角B-AC1-C的平面角.
在Rt△BOH中,BO=
6
OH=
6
3
,tanOHB=3,
故二面角B-AC1-C的大小为arctan3.(10分)
(Ⅲ)在BD上取点M,使得OM=OD,连接AM,CM,
∵AD=DC,∠ADC=90°,又DO⊥AC,且AO=OC,
∴CM=AM=AD,
∴四边形AMCD是一个正方形.
可证D1M⊥A1D,D1M⊥A1C1,又A1D∩A1C1=A1
∴D1M⊥平面A1C1D,此时DM=2
2

故当DM=2
2
时,有D1M⊥平面A1C1D.(14分)
点评:本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查空间想象能力,运算能力和推理论证能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直四棱柱ABCD-A′B′C′D′中,底面ABCD为梯形,BC∥AD,AA′=AB=
2
,AD=2BC=2,直线AD与面ABB'A'所成角为45°.
(Ⅰ)求证:DB⊥面ABB'A';
(Ⅱ)求证:AD'⊥B'C;
(Ⅲ)求二面角D-AB'-B的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知直四棱柱ABCD-A′B′C′D′,四边形ABCD为正方形,AA′=2AB=2,E为棱CC′的中点.
(Ⅰ)求证:A′E⊥平面BDE;
(Ⅱ)设F为AD中点,G为棱BB′上一点,且BG=
14
BB′
,求证:FG∥平面BDE;
(Ⅲ)在(Ⅱ)的条件下求二面角G-DE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直四棱柱ABCD-A′B′C′D′的底面是菱形,∠ABC=60°,E、F分别是棱CC′与BB′上的点,且EC=BC=2FB=2.
(1)求证:平面AEF⊥平面AA′C′C;
(2)求截面AEF与底面ABCD的夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在高为1的直四棱柱ABCD-A'B'C'D'中,底面ABCD是等腰梯形,AB=BC=CD=1,AD=2. 
(1)求异面直线BC'与CD'所成的角;
(2)求被截面ACD'所截的两部分几何体的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•崇明县一模)如图,在直四棱柱ABCD-A'B'C'D'中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E、F、G分别是棱A1B1、AB、A1D1的中点.
(1)证明:直线GE⊥平面FCC1
(2)求二面角B-FC1-C的大小.

查看答案和解析>>

同步练习册答案