精英家教网 > 高中数学 > 题目详情
已知函数(m∈Z)为偶函数且在区间(0,+∞)上单调递减,则m=( )
A.2或3
B.3
C.2
D.1
【答案】分析:由幂函数为偶函数,又它在(0,+∞)递减,故它的幂指数为负,由幂指数为负与幂指数为偶数这个条件,即可求出参数m 的值.
解答:解:幂函数为偶函数,且在(0,+∞)递减,
∴m2-5m+4<0,且m2-5m+4是偶数
由 m2-5m+4<0得1<m<4,又由题设m是整数,故m的值可能为2或3,
验证知m=2或者3时,都能保证m2-5m+4是偶数
故m=2或者3即所求.
故选A.
点评:本题考查幂函数的性质,已知性质,将性质转化为与其等价的不等式求参数的值属于性质的变形运用,请认真体会解题过程中转化的方向.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题中:
①集合A={ x|0≤x<3且x∈N }的真子集的个数是8;
②将三个数:x=20.2,y=(
1
2
)2
,z=log2
1
2
按从大到小排列正确的是z>x>y;
③函数f(x)=x2+(3a+1)x+2a在 (-∞,4)上为减函数,则实数a的取值范围是a≤-3;
④已知函数y=4x-4•2x+1(-1≤x≤2),则函数的值域为[-
3
4
,1];
⑤定义在(-1,0)的函数f(x)=log(2a)(x+1)满足f(x)>0的实数a的取值范围是0<a<
1
2

⑥关于x的一元二次方程x2+mx+2m+1=0一个根大于1,一个根小于1,则实数m的取值范围m<-
2
3

其中正确的有
③⑤⑥
③⑤⑥
(请把所有满足题意的序号都填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数h(x),定义fk(x)=h(x-mk)+nk,x∈(mk,m+mk],k∈Z(其中m>0、n>0是常数)叫阶梯函数的第k阶,m叫阶宽,n叫阶高.
(1)若h(x)=2x,求当阶宽为2,阶高为3的第0阶和第k函数f0(x)和fk(x)的解析式;
(2)若h(x)=x2,设阶宽为2,阶高为3;是否存在正整数k,使得fk(x)<(1-3k)x+4k2+3k-1有解?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈z)为偶函数,且以f(2011)<f(2012).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0,a≠1)在区间[2,3]上为增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知函数数学公式(m∈Z)为偶函数且在区间(0,+∞)上单调递减,则m=


  1. A.
    2或3
  2. B.
    3
  3. C.
    2
  4. D.
    1

查看答案和解析>>

同步练习册答案