精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x-2m2+m+3(m∈z)为偶函数,且以f(2011)<f(2012).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0,a≠1)在区间[2,3]上为增函数,求实数a的取值范围.
分析:(1)因为幂函数是一个偶函数,且f(2011)<f(2012)得-2m2+m+3是偶数且-2m2+m+3>0,求出m的解集,找出整数解即可.
(2)分类讨论,考查内外函数的单调性,利用f(x)=loga(x2-ax)(a>0,且a≠1)在区间[2,3]上是增函数,即可求实数a的取值范围.
解答:解:(1)由题意得:-2m2+m+3是偶数且-2m2+m+3>0,
∴-1<m<
3
2
,且m∈Z,∴m=0或1,
当m=0时,-2m2+m+3=3为奇数,不合,当m=1时,-2m2+m+3=2为偶数,
∴m的值为1,f(x)=x2
(2)g(x)=loga[f(x)-ax]=loga(x2-ax),设t=x2-ax,
当a>1时,由于g(x)=logat是增函数,故只须函数t=x2-ax在[2,3]是增函数,且函数t大于0,
a
2
≤2
4-2a>0
,解得1<a<2.
当 1>a>0时,由题意可得 函数t=x2-ax在[2,3]应是减函数,且函数t大于0,
a
2
≥3
9-3a>0
,此时无解
综上,实数a的取值范围是(1,2).
点评:本题考查幂函数的概念、解析式、定义域、值域,对数函数的单调性,考查复合函数的单调区间,体现了数形结合的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案