精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(x+1)lnx-x+1
(I)求曲线在(1,f(1))处的切线方程;
(Ⅱ)若xf′(x)≤x2+ax+1,求a的取值范围;
(Ⅲ)证明:(x-1)f(x)≥0.
(I)f′(x)=
x+1
x
+lnx-1=
1
x
+lnx

所以f′(1)=1,所以切线方程y=x-1
(Ⅱ)xf′(x)≤x2+ax+1?1+xlnx≤x2+ax+1,
即:xlnx≤x2+ax,x>0,则有lnx≤x+a,
即要使a≥lnx-x成立.
令g(x)=lnx-x,那么g′(X)=
1
x
-1=0
?x=1,
可知当0<x<1时单调增,当x>1时单调减.
故g(x)=lnx-x 在x=1 处取最大值为gmax=-1,
那么要使得a≥lnx-x 成立,则有a≥-1.
(Ⅲ)由(Ⅱ)可得:lnx-x≤-1,即lnx-x+1≤0
当0<x<1 时,f(x)=xlnx+lnx-x+1<0,
当x≥1时,f(x)=xlnx+lnx-x+1
=lnx+(xlnx-x+1)
=lnx+x(lnx+
1
x
-1)
=lnx-x(ln
1
x
-
1
x
+1)
≥0.
∴f(x)=xlnx+lnx-x+1=lnx+(xlnx-x+1)≥0
综上所述,(x-1)f(x)≥0
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案