精英家教网 > 高中数学 > 题目详情

【题目】出租车几何学是由十九世纪的赫尔曼·闵可夫斯基所创立的.在出租车几何学中,点还是形如的有序实数对,直线还是满足的所有组成的图形,角度大小的定义也和原来一样,对于直角坐标系内任意两点定义它们之间的一种距离直角距离):,请解决以下问题:

1)求线段)上一点到原点距离

2)求所有到定点距离均为2的动点围成的图形的周长;

3)在欧式几何学中有如下三个与距离有关的正确结论:

①平面上任意三点ABC

②平面上不在一直线上任意三点ABC,则是以为直角三角形

③平面上存在两个不同的定点AB若动点P满足,则动点P的轨迹是的垂直平分线

上述结论对于出租车几何学中的直角距离是否还正确,并说明理由.

【答案】1223)①正确②错误③错误,见解析

【解析】

(1)根据直角距离的定义直接求解即可.

(2)设点到定点距离2,再根据定义任意两点间的距离分四种情况求解即可.

(3)直接证明或举出反例判断即可.

(1)易得线段上一点到原点距离

(2) 设点到定点距离2,

1., ,

此时为线段,

2., ,

此时为线段,

3., ,

此时为线段,

4., ,

此时为线段,

易得围成的图形的形状为以为顶点的正方形

故周长为.

(3)

①设,

,.

根据绝对值三角不等式可知,

同理.

.

成立.故①正确.

,,

,.

满足,,故②错误.

③设,,

,满足,不在的垂直平分线上.故③错误.

综上所述, ①正确②错误③错误

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程为,直线,直线 .以极点为原点,极轴为轴的正半轴建立平面直角坐标系.

(1)求直线的直角坐标方程以及曲线的参数方程;

(2)已知直线与曲线交于两点,直线与曲线交于两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,过点作斜率为的直线与抛物线交于不同的两点

1)求的取值范围;

2)若为直角三角形,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面内一动点)到点的距离与点轴的距离的差等于1

1)求动点的轨迹的方程;

2)过点的直线与轨迹相交于不同于坐标原点的两点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,且椭圆C上恰有三点在集合.

1)求椭圆C的方程;

2)若点O为坐标原点,直线AB与椭圆交于AB两点,且满足,试探究:点O到直线AB的距离是否为定值.如果是,请求出定值:如果不是,请明说理由.

3)在(2)的条件下,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年,某地认真贯彻落实中央十九大精神和各项宏观调控政策,经济运行平稳增长,民生保障持续加强,惠民富民成效显著,城镇居民收入稳步增长,收入结构稳中趋优.据当地统计局公布的数据,现将8月份至12月份当地的人均月收入增长率如图(一)与人均月收入绘制成如图(二)所示的不完整的条形统计图.现给出如下信息:

①10月份人均月收入增长率为

②11月份人均月收入约为1442元;

③12月份人均月收入有所下降;

④从上图可知该地9月份至12月份这四个月与8月份相比人均月收入均得到提高.

其中正确的信息个数为( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,左顶点为.过点作直线交椭圆于另一点,交轴于点,点为坐标原点.

1)求椭圆的方程:

2)已知的中点,是否存在定点,对任意的直线恒成立?若存在,求出点的坐标;若不存在说明理由;

3)过点作直线的平行线与椭圆相交,为其中一个交点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知城市周边有两个小镇,其中乡镇位于城市的正东方处,乡镇与城市相距夹角的正切值为2,为方便交通,现准备建设一条经过城市的公路,使乡镇分别位于的两侧,过建设两条垂直的公路,分别与公路交汇于两点,以为原点,所在直线为轴,建立如图所示的平面直角坐标系.

1)当两个交汇点重合,试确定此时路段长度;

2)当,计算此时两个交汇点到城市的距离之比;

3)若要求两个交汇点的距离不超过,求正切值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某教师将寒假期间该校所有学生阅读小说的时间统计如下图所示,并统计了部分学生阅读小说的类型,得到的数据如下表所示:

男生

女生

阅读武侠小说

80

30

阅读都市小说

20

70

(1)是否有99.9%的把握认为“性别”与“阅读小说的类型”有关?

(2)求学生阅读小说时间的众数和平均数(同一组数据用该组区间的中点值作代表);

(3)若按照分层抽样的方法从阅读时间在的学生中随机抽取6人,再从这6人中随机挑选2人介绍选取小说类型的缘由,求所挑选的2人阅读时间都在的概率.

附:.

0.025

0.010

0.005

0.001

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案