精英家教网 > 高中数学 > 题目详情

【题目】命题p:x∈R,ax2﹣2ax+1>0,命题q:指数函数f(x)=ax(a>0且a≠1)为减函数,则P是q的(  )

A.充分不必要条件B.必要不充分条件

C.充分必要条件D.既不充分也不必要条件

【答案】B

【解析】

根据充分条件和必要条件的定义分别进行判断即可.

命题pxRax22ax+10,解命题pa0时,△=4a24a4aa1)<0,且a>0

∴解得:0a1

a0时,不等式ax22ax+10R上恒成立,

∴不等式ax22ax+10R上恒成立,有:0a1

命题q:指数函数fx)=axa0a1)为减函数,则0a1

所以当0a1;推不出0a1;当0a1;能推出0a1

Pq的必要不充分条件.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,已知曲线的参数方程为为参数)。曲线的参数方程为为参数),在以坐标原点为极点,轴正半轴为极轴建立极坐标系.

(1)求曲线的极坐标方程;

(2)在极坐标系中,射线与曲线交于点,射线与曲线交于点,求的面积(其中为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知二次函数均为实常数,)的最小值是0,函数的零点是,函数满足,其中,为常数.

1)已知实数满足、,且,试比较的大小关系,并说明理由;

2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产一批零件,为了解这批零件的质量状况,检验员从这批产品中随机抽取了100件作为样本进行检测,将它们的重量(单位:g)作为质量指标值.由检测结果得到如下频率分布直方图.

分组

频数

频率

8

16

0.16

4

0.04

合计

100

1

1)求图中的值;

2)根据质量标准规定:零件重量小于47或大于53为不合格品,重量在区间内为合格品,重量在区间内为优质品.已知每件产品的检测费用为5元,每件不合格品的回收处理费用为20元.以抽检样本重量的频率分布作为该零件重量的概率分布.若这批零件共,现有两种销售方案:方案一:不再检测其他零件,整批零件除对已检测到的不合格品进行回收处理,其余零件均按150/件售出;方案二:继续对剩余零件的重量进行逐一检测,回收处理所有不合格品,合格品按150/件售出,优质品按200/件售出.仅从获得利润大的角度考虑,该生产商应选择哪种方案?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A是以BC为直径的圆O上异于BC的动点,P为平面ABC外一点,且平面PBC⊥平面ABCBC=3,PB=2PC,则三棱锥PABC外接球的表面积为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,,二面角的大小为120°,点在棱上,且,点的重心.

1)证明:平面

2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若有两个零点,求a的取值范围;

2)设,直线的斜率为k,若恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分18第(1)小题4分,第(2)小题5分,第(3)小题9分)

设函数的定义域为,值域为,如果存在函数,使得函数的值域仍是,那么称是函数的一个等值域变换.

(1)判断下列函数是不是函数的一个等值域变换?说明你的理由;

(2)设函数的定义域为,值域为,函数的定义域为,值域为,那么是否为的一个等值域变换的一个必要条件?请说明理由;

(3)设的定义域为,已知的一个等值域变换,且函数的定义域为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线C的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线的极坐标方程为

(1)C的普通方程和的直角坐标方程;

(2)C上的点到距离的最大值.

查看答案和解析>>

同步练习册答案