精英家教网 > 高中数学 > 题目详情
7.数列{an}中,a1=2,a2=3,an=an-1an-2(n>2),则a4等于(  )
A.2B.3C.6D.18

分析 利用数列的递推关系式逐步求解即可.

解答 解:数列{an}中,a1=2,a2=3,an=an-1an-2(n>2),
可得a3=a2a1=6;
a4=a3a2=18.
故选:D.

点评 本题考查数列的递推关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.如图,直角三角形ABC中,∠C=90°,其内切圆与斜边AB相切于点D,若AD=3,BD=4,则△ABC的面积为12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知m∈R,设命题P:?x∈R,mx2+mx+1>0;命题Q:函数f(x)=3x2+2mx+m+$\frac{4}{3}$ 有两个不同的零点.求使“P∨Q”为假命题的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图所示,正方体ABCD-A′B′C′D′的棱长为1,E,F分别是棱AA′,CC′的中点,过直线E,F的平面分别与棱BB′、DD′交于M,N,设BM=x,x∈[0,1],给出以下五个命题:
①平面MENF⊥平面BDD'B'
②四边形MENF的面积的最大值为2;
③多面体ABCD-MENF的体积为$\frac{1}{2}$;
④四棱锥C′-MENF的体积恒为定值$\frac{1}{3}$;
⑤直线MN与直线CC′所成角的正弦值的范围是[${\frac{{\sqrt{6}}}{3}$,1]
以上命题中正确的有①③④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,若a2<b2+c2,则角A是锐角(填“直角”、“锐角”、“钝角”).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知p:x2-2x-3>0,q:|x-1|<a,若¬p是q的充分不必要条件,则实数a的取值范围是(  )
A.[2,+∞)B.(2,+∞)C.[1,+∞)D.(1,++∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在四棱锥P-ABCD中,底面ABCD是正方形.点E是棱PC的中点,平面ABE与棱PD交于点F.PA=AD=PD=2,且平面PAD⊥平面ABCD,
(1)求证:AB∥EF;
(2)证明:AF⊥平面PCD;
(3)求三棱锥P-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合A={x|2a≤x<a+3},B={x|x<-1或x>5}.
(1)若a=-1,求A∪B,(∁RA)∩B.
(2)若A∩B=∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知α为第三象限角,且cosα=-$\frac{{\sqrt{5}}}{5}$,则tan2α的值为(  )
A.$-\frac{4}{3}$B.$\frac{4}{3}$C.$-\frac{3}{4}$D.-2

查看答案和解析>>

同步练习册答案