精英家教网 > 高中数学 > 题目详情
1.已知命题p:?x∈(-2,2),|x-1|+|x+2|≥6,则下列叙述正确的是(  )
A.¬p为:?x∈(-2,2),|x-1|+|x+2|<6B.¬p为:?x∈(-2,2),|x-1|+|x+2|≥6
C.¬p为:?x∈(-∞,-2]∪[2,+∞),|x-1|+|x+2|<6D.¬p为真命题

分析 由已知中的原命题,结合特称命题否定的定义,可得¬p.再由绝对值三角不等式,可得答案.

解答 解:∵命题p:?x∈(-2,2),|x-1|+|x+2|≥6,
∴¬p为:?x∈(-2,2),|x-1|+|x+2|<6,
故A,B,C全错误;
根据|x-1|+|x+2|≥|(x-1)+(-x-2)|=3,
故¬p为真命题,
故D正确;
故选:D

点评 本题考查的知识点是特称命题的否定,绝对值三角不等式,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知平面向量$\overrightarrow{AB}$=(1,y),$\overrightarrow{AC}$=(2,-1),且$\overrightarrow{AB}$$•\overrightarrow{AC}$=0,则3$\overrightarrow{AB}$-2$\overrightarrow{AC}$=(  )
A.(8,1)B.(8,3)C.(-1,8)D.(7,8)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.对于实数x,将满足“0≤y<1且x-y为整数”的实数y称为实数x的小数部分,用符号?x>表示.对于实数a,无穷数列{an}满足如下条件:
①a1=?a>; ②an+1=$\left\{\begin{array}{l}{<\frac{1}{{a}_{n}}>({a}_{n}≠0)}\\{0({a}_{n}=0)}\end{array}\right.$.
(Ⅰ)若a=$\sqrt{2}$时,数列{an}通项公式为an=$\sqrt{2}$-1;
(Ⅱ)当a>$\frac{1}{2}$时,对任意n∈N*都有an=a,则a的值为$\frac{\sqrt{5}-1}{2}$ 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=lnx的图象在点(1,0)处的切线方程是x-y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知sinα•cosα=$\frac{1}{8}$,且0<α<$\frac{π}{4}$,则sinα-cosα=(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{3}{4}$D.-17

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F(c,0),圆F:(x-c)2+y2=c2,直线l与双曲线C的一条渐近线垂直且在x轴上的截距为$\frac{2}{3}$a,若圆F被直线l所截得的弦长为$\frac{4\sqrt{2}}{3}$c,则双曲线的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)=$\left\{\begin{array}{l}{\frac{4}{x}+1,x≥4}\\{lo{g}_{2}x,0<x<4}\end{array}\right.$若f(a)=f(b)=c,f′(b)<0,则a,b,c的大小关系是b>a>c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为(  )
A.(kπ-$\frac{1}{4}$,kπ+$\frac{3}{4}$),k∈ZB.(2kπ-$\frac{1}{4}$,2kπ+$\frac{3}{4}$),k∈Z
C.(k-$\frac{1}{4}$,k-$\frac{3}{4}$),k∈ZD.(2k-$\frac{1}{4}$,2k+$\frac{3}{4}$),k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在直三棱柱ABC-A1B1C1中,AA1=BC=AC=2,AB=2$\sqrt{2}$,D、E分别是的AB,BB1的中点.
(Ⅰ)证明:BC1∥平面A1CD;
(Ⅱ)求二面角D-A1C-E的正弦值.

查看答案和解析>>

同步练习册答案