精英家教网 > 高中数学 > 题目详情

已知无穷数列…各项的和为3,无穷等比数列…各项的和为6,则数列的公比为

[  ]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知无穷数列{an}为等差数列,各项均为正数,给出方程aix2+2ai+1x+ai+2=0(i=1,2,3,…).
(1)求证这些方程有一个公共根为-1;
(2)设这些方程除公共根以外的另一根为αi,且f(n)=(α1+1)(α2+1)+(α2+1)(α3+1)+…+(αn+1)(αn+1+1).求证:f(n)<
4da1
.(其中d为数列{an}的公差)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闵行区一模)已知无穷数列{an},首项a1=3,其前n项和为Sn,且an+1=(a-1)Sn+2(a≠0,a≠1,n∈N*).若数列{an}的各项和为-
8
3
a
,则a=
-
1
2
-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知无穷数列{an}满足a1=2,数列{(
1
2
)an}
是各项和等于
2b
2b+2-4
的无穷等比数列,其中常数b是正整数.
(1)求无穷等比数列{(
1
2
)an}
的公比和数列{an}的通项公式;
(2)在无穷等比数列{bn}中,b1=a1,b2=a2,试找出一个b的具体值,使得数列{bn}的任意项都在数列{an}中;试找出一个b的具体值,使得数列{bn}的项不都在数列{an}中,简要说明理由;
(3)对于问题(2)继续进行研究,探究当且仅当b取怎样的值时,数列{bn}的任意项都在数列{an}中,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闵行区一模)已知无穷数列{an},其前n项和为Sn,且an=(a+1)Sn+2(a≠0,a≠-1,n∈N*).若数列{an}的各项和为-a,则a=
-2
-2

查看答案和解析>>

同步练习册答案