精英家教网 > 高中数学 > 题目详情

数列{xn}的通项xn=(-1)n+1,前n项和为Sn,则数学公式=________.


分析:由题意可得当n为偶数时,Sn =0,=,故当n为奇数时,Sn =1,故
=,由此求出的值.
解答:由于数列{xn}的通项xn=(-1)n+1,前n项和为Sn
故当n为偶数时,Sn =0,故当n为奇数时,Sn =1.
∴当n为偶数时,===
==
当n为奇数时,===
==
故答案为:
点评:本题主要考查求数列极限、数列求和的方法,体现了分类讨论的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N*),其中x1为正实数.
(Ⅰ)用xn表示xn+1
(Ⅱ)若x1=4,记an=lg
xn+2xn-2
,证明数列{an}成等比数列,并求数列{xn}的通项公式;
(Ⅲ)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意函数f(x),x∈D,可按图构造一个数列发生器.记由数列发生器产生数列{xn}.
(Ⅰ)若定义函数f(x)=
4x-2
x+1
,且输入x0=
49
65
,请写出数列{xn}的所有项;
(Ⅱ)若定义函数f(x)=2x+3,且输入x0=-1,求数列{xn}的通项公式xn
(Ⅲ)若定义函数f(x)=xsinx(0≤x≤2π),且要产生一个无穷的常数列{xn},试求输入的初始数据x0的值及相应数列{xn}的通项公式xn

查看答案和解析>>

科目:高中数学 来源: 题型:

在xoy平面上有一系列点P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,对每个正整数n,以点Pn为圆心的⊙Pn与x轴及射线y=
3
x,(x≥0)都相切,且⊙Pn与⊙Pn+1彼此外切.若x1=1,且xn+1<xn(n∈N*).
(1)求证:数列{xn}是等比数列,并求数列{xn}的通项公式;
(2)设数列{an}的各项为正,且满足an
xnan-1
xn+an-1
a1
=1,
求证:a1x1+a2x2+a3x3+…+anxn
5
4
-
1
3n-1
,(n≥2)
(3)对于(2)中的数列{an},当n>1时,求证:(1-an)2[
a
2
2
(1-
a
2
2
)
2
+
a
3
3
(1-
a
3
3
)
2
+…+
a
n
n
(1-
a
n
n
)
2
]>
4
5
-
1
1+an+
a
2
n
+…+
a
n
n

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•石景山区一模)已知函数y=f(x)对于任意θ≠
2
(k∈Z),都有式子f(a-tanθ)=cotθ-1成立(其中a为常数).
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)利用函数y=f(x)构造一个数列,方法如下:
对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述构造过程中,如果xi(i=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果xi不在定义域中,那么构造数列的过程就停止.
(ⅰ)如果可以用上述方法构造出一个常数列,求a的取值范围;
(ⅱ)是否存在一个实数a,使得取定义域中的任一值作为x1,都可用上述方法构造出一个无穷数列{xn}?若存在,求出a的值;若不存在,请说明理由;
(ⅲ)当a=1时,若x1=-1,求数列{xn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图:已知曲线C:在点P(1,1)处的切线与x轴交于点Q1,再过Q1点作x轴的垂线交曲线C于点P1,再过P1作C的切线与x轴交于点Q2,依次重复下去,过Pn(xn,yn)作C的切线与x轴交于点Qn(xn+1,O).
(1)求数列{xn}的通项公式;
(2)求△OPnPn+1的面积;
(3)设直线OPn的斜率为kn,求数列nkn的前n项和Sn,并证明Sn
79

查看答案和解析>>

同步练习册答案