精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N*),其中x1为正实数.
(Ⅰ)用xn表示xn+1
(Ⅱ)若x1=4,记an=lg
xn+2xn-2
,证明数列{an}成等比数列,并求数列{xn}的通项公式;
(Ⅲ)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.
分析:(Ⅰ)由题设条件知曲线y=f(x)在点(xn,f(xn))处的切线方程是y-(xn2-4)=2xn(x-xn).
由此可知xn2+4=2xnxn+1.所以xn+1=
xn
2
+
2
xn


(Ⅱ)由xn+1=
xn
2
+
2
xn
,知xn+1+2=
xn
2
+
2
xn
+2=
(xn+2)2
2xn
,同理xn+1-2=
(xn-2)2
2xn

xn+1+2
xn+1-2
=(
xn+2
xn-2
)2
.由此入手能够导出xn=
2(32n-1+1)
32n-1-1


(Ⅲ)由题设知xn=
2(32n-1+1)
32n-1-1
,所以
bn+1
bn
=
32n-1-1
32n-1
=
1
32n-1+1
1
32n-1
1
321-1
=
1
3
,由此可知Tn<3(n∈N*).
解答:解:(Ⅰ)由题可得f′(x)=2x.
所以曲线y=f(x)在点(xn,f(xn))处的切线方程是:y-f(xn)=f′(xn)(x-xn).
即y-(xn2-4)=2xn(x-xn).
令y=0,得-(xn2-4)=2xn(xn+1-xn).
即xn2+4=2xnxn+1
显然xn≠0,∴xn+1=
xn
2
+
2
xn


(Ⅱ)由xn+1=
xn
2
+
2
xn
,知xn+1+2=
xn
2
+
2
xn
+2=
(xn+2)2
2xn

同理xn+1-2=
(xn-2)2
2xn
,故
xn+1+2
xn+1-2
=(
xn+2
xn-2
)2

从而lg
xn+1+2
xn+1-2
=2lg
xn+2
xn-2
,即an+1=2an.所以,数列{an}成等比数列.
an=2n-1a1=2n-1lg
x1+2
x1-2
=2n-1lg3

lg
xn+2
xn-2
=2n-1lg3

从而
xn+2
xn-2
=32n-1

所以xn=
2(32n-1+1)
32n-1-1


(Ⅲ)由(Ⅱ)知xn=
2(32n-1+1)
32n-1-1

bn=xn-2=
4
32n-1-1
>0

bn+1
bn
=
32n-1-1
32n-1
=
1
32n-1+1
1
32n-1
1
321-1
=
1
3

当n=1时,显然T1=b1=2<3.
当n>1时,bn
1
3
bn-1<(
1
3
)2bn-2<<(
1
3
)n-1b1

∴Tn=b1+b2+…+bnb1+
1
3
b1+…+(
1
3
)n-1b1
=
b1[1-(
1
3
)
n
]
1-
1
3
=3-3•(
1
3
)n<3

综上,Tn<3(n∈N*).
点评:本题综合考查数列、函数、不等式、导数应用等知识,以及推理论证、计算及解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案