½â£º£¨¢ñ£©

¡£¨2·Ö£©
=

¡£¨3·Ö£©
¡àº¯Êýg£¨x£©µÄͼÏóÏòÓÒÆ½ÒÆ

¸öµ¥Î»£¬µÃg£¨x+

£©=sin2x£¬
ÔÙ½«ºá×ø±êÉ쳤µ½ÔÀ´µÄ2±¶£¨×Ý×ø±ê²»±ä£©£¬µÃh£¨x£©=sinx£¬¡£¨4·Ö£©
ÔÙ½«º¯Êýh£¨x£©µÄͼÏóÉϸ÷µãµÄ×Ý×ø±êËõ¶ÌΪÔÀ´µÄ

±¶£¨ºá×ø±ê²»±ä£©£¬
²¢½«Í¼ÏóÏòÉÏÆ½ÒÆ1¸öµ¥Î»£¬µÃf£¨x£©=msinx+1£®¡£¨5·Ö£©
£¨¢ò£©·½³Ìf£¨x£©=xÓÐÇÒÖ»ÓÐÒ»¸öʵ¸ù£®¡£¨6·Ö£©
ÀíÓÉÈçÏ£º
ÓÉ£¨¢ñ£©Öªf£¨x£©=msinx+1£¬ÁîF£¨x£©=f£¨x£©-x=msinx-x+1£¬
ÒòΪF£¨0£©=1£¾0£¬½áºÏ

£¬µÃ

£®
ËùÒÔF£¨x£©=0ÔÚ

ÖÁÉÙÓÐÒ»¸ö¸ù£®¡£¨7·Ö£©
ÓÖÒòΪ

£¬
ËùÒÔº¯ÊýF£¨x£©ÔÚRÉϵ¥µ÷µÝ¼õ£¬
Òò´Ëº¯ÊýF£¨x£©ÔÚRÉÏÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£¬¼´·½³Ìf£¨x£©=xÓÐÇÒÖ»ÓÐÒ»¸öʵ¸ù£®¡£¨9·Ö£©
£¨¢ó£©ÒòΪa
1=0£¬a
n+1=f£¨a
n£©=msina
n+1£¬ËùÒÔa
2=1£¾a
1£¬
ÓÖa
3=msin1+1£¬ÒòΪ

£¬ËùÒÔ0£¼sin1£¼1£¬ËùÒÔa
3£¾1=a
2£®
Óɴ˲²âa
n£¾a
n-1£¨n¡Ý2£©£¬¼´ÊýÁÐ{a
n}Êǵ¥µ÷µÝÔöÊýÁУ®¡£¨11·Ö£©
ÒÔÏÂÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£ºn¡ÊN£¬ÇÒn¡Ý2ʱ£¬a
n£¾a
n-1¡Ý0³ÉÁ¢£®
£¨1£©µ±n=2ʱ£¬a
2=1£¬a
1=0£¬ÏÔÈ»ÓÐa
2£¾a
1¡Ý0³ÉÁ¢£®
£¨2£©¼ÙÉèn=k£¨k¡Ý2£©Ê±£¬ÃüÌâ³ÉÁ¢£¬¼´a
k£¾a
k-1¡Ý0£¨k¡Ý2£©£®¡£¨12·Ö£©
Ôòn=k+1ʱ£¬a
k+1=f£¨a
k£©=msina
k+1£¬
ÒòΪ

£¬ËùÒÔ

£®
ÓÖsinxÔÚ

Éϵ¥µ÷µÝÔö£¬

£¬
ËùÒÔsina
k£¾sina
k-1¡Ý0£¬ËùÒÔmsina
k+1£¾msina
k-1+1£¬
¼´sina
k+1£¾msina
k-1+1=f£¨a
k-1£©=a
k¡Ý0£¬
¼´n=k+1ʱ£¬ÃüÌâ³ÉÁ¢£®¡£¨13·Ö£©
×ۺϣ¨1£©£¬£¨2£©£¬n¡ÊN£¬ÇÒn¡Ý2ʱ£¬a
n£¾a
n-1³ÉÁ¢£®
¹ÊÊýÁÐ{a
n}Ϊµ¥µ÷µÝÔöÊýÁУ®¡£¨14·Ö£©
·ÖÎö£º£¨¢ñ£©ÀûÓöþ±¶½ÇÈý½Çº¯Êý¹«Ê½£¬½«g£¨x£©»¯¼òÕûÀíµÃg£¨x£©=

£¬ÔÙ¸ù¾Ýº¯Êýy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»µÄ¹æÂÉ£¬½áºÏÌâÒâ¿ÉµÃ±ä»»ºóµÄf£¨x£©µÄ±í´ïʽ£»
£¨II£©ÁîF£¨x£©=f£¨x£©-x=msinx-x+1£¬Í¨¹ý¼ÆËãF£¨0£©ºÍF£¨

£©£¬½áºÏÁãµã´æÔÚÐÔ¶¨Àí£¬µÃF£¨x£©=0ÔÚ

ÖÁÉÙÓÐÒ»¸ö¸ù£¬ÔÙ¸ù¾Ýµ¼ÊýÌÖÂÛF£¨x£©µÄµ¥µ÷ÐÔ£¬µÃF£¨x£©ÔÚRÉϵ¥µ÷µÝ¼õ£¬¼´¿ÉµÃµ½·½³Ìf£¨x£©=xÓÐÇÒÖ»ÓÐÒ»¸öʵ¸ù£®
£¨III£©¸ù¾Ýf£¨x£©±í´ïʽ£¬¼ÆËãa
1=0£¬a
2=1£¾a
1£¬a
3=msin1+1£¾a
2£®Óɴ˲²âa
n£¾a
n-1£¨n¡Ý2£©£¬¼´ÊýÁÐ{a
n}Êǵ¥µ÷µÝÔöÊýÁУ®ÔÙÓÃÊýѧ¹éÄÉ·¨½øÐÐÖ¤Ã÷£¬¿ÉµÃ²ÂÏëµÄ½áÂÛ³ÉÁ¢£¬¼´ÊýÁÐ{a
n}Êǵ¥µ÷µÝÔöº¯Êý£®
µãÆÀ£º±¾Ì⿼²éÈý½ÇºãµÈ±ä»¯¡¢Èý½Çº¯ÊýµÄͼÏóÓëÐÔÖÊ¡¢ÁãµãÓë·½³ÌµÄ¸ù¡¢Êýѧ¹éÄÉ·¨µÈ»ù´¡ÖªÊ¶£¬¿¼²éÔËËãÇó½âÄÜÁ¦¡¢ÍÆÀíÂÛÖ¤ÄÜÁ¦£¬¿¼²éÊýÐνáºÏ˼Ïë¡¢º¯ÊýÓë·½³Ì˼Ïë¡¢ÌØÊâÓëÒ»°ãµÈ˼Ïë·½·¨£®