精英家教网 > 高中数学 > 题目详情
已知
a
=(cosθ,-sinθ),
b
=(cosθ,sinθ),θ∈(0,
π
2
)
,且
a
b
=-
1
2

(1)求θ的大小;  
(2)若sin(x+θ)=
10
10
,x∈(
π
2
,π)
,求cosx的值.
分析:(1)利用向量垂直的坐标间的关系式即可求得θ的大小;
(2)结合(1),利用两角差的余弦公式即可求得cosx的值.
解答:解:(1)∵
a
=(cosθ,-sinθ),
b
=(cosθ,sinθ)且
a
b
=-
1
2

∴cos2θ-sin2θ=-
1
2

∴cos2θ=-
1
2
,又θ∈(0,
π
2
),
∴2θ=
3

∴θ=
π
3

(2)∵θ=
π
3
,sin(x+θ)=
10
10

∴sin(x+θ)=sin(x+
π
3
)=
10
10

∵x∈(
π
2
,π),
∴x+
π
3
∈(
6
3
),
∴cos(x+
π
3
)=-
3
10
10

∴cosx=cos[(x+
π
3
)-
π
3
]
=cos(x+
π
3
)cos
π
3
+sin(x+
π
3
)sin
π
3

=-
3
10
10
×
1
2
+
10
10
×
3
2

=
30
-3
10
20
点评:本题考查平面向量数量积的坐标运算,考查三角函数中的恒等变换应用,突出考查两角差的余弦,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(cosα,sinα)
b
=(cosβ,sinβ)
,其中0<α<β<π.
(1)求证:
a
+
b
a
-
b
互相垂直;
(2)若k
a
+
.
b
a
-k
.
b
的长度相等,求α-β的值(k为非零的常数).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•静安区一模)(文)已知
a
=(cosα,3sinα),
b
=(3cosβ,sinβ),(0<β<α<
π
2
)
是平面上的两个向量.
(1)试用α、β表示
a
b

(2)若
a
b
=
36
13
,且cosβ=
4
5
,求α的值(结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(cosθ,sinθ),
b
=(cosα,sinα)
,则下列说法不正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=
cosωx,sinωx
b
=
cosωx+
3
sinωx,
3
cosωx-sinωx
(ω>0),函数f(x)=
a
b
的最小正周期为π
(1)求函数f(x)的单调递减区间及对称中心;
(2)求函数f(x)在区间
π
4
π
2
上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•朝阳区一模)已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),0<α<β<π

(I)求|
a
|
的值;
(II)求证:
a
+
b
a
-
b
互相垂直;
(III)设|k
a
+
b
|=|
a
-k
b
|,k∈R
且k≠0,求β-α的值.

查看答案和解析>>

同步练习册答案